L-1363F
4300/6300 Series
Magneto Maintenance and
Overhaul Manual

Technical Aspects
FAA APPROVED

SCOPE
This Maintenance and Overhaul Manual provides Detailed
maintenance, assembly, disassembly and Troubleshooting
instructions and technical Information about the design and
operation of Slick Magnetos.

CHAMPION AEROSPACE PROPRIETARY INFORMATION
THIS DOCUMENT IS PROPRIETARY PROPERTY OF CHAMPION AEROSPACE LLC. IT IS NOT TO BE COPIED OR REPRODUCED
IN ANY MANNER, NOR SUBMITTED TO OTHER PARTIES FOR EXAMINATION WITHOUT PRIOR WRITTEN APPROVAL.
THIS PAGE LEFT BLANK INTENTIONALLY.
LOG OF REVISIONS

To: Holders of L-1363E, dated March 01, 2009.

Subject: Revision F, dated January 5, 2011.

1. All pages of this manual are new.

2. Revised pages that have important changes are shown below.

<table>
<thead>
<tr>
<th>Page Number</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Page</td>
<td>Added Technical Aspects and FAA Approved statement to cover page.</td>
</tr>
<tr>
<td>Page 0-2</td>
<td>Updated paragraph for Complete Upgrade Kits under A Complete Offering. Removed paragraph for Complete AOG Inventory.</td>
</tr>
<tr>
<td>Page 3-4</td>
<td>Added paragraph 3.3.4.B.2 for impulse coupling spring inspection. Renumbered remaining subparagraphs under 3.3.4.B.</td>
</tr>
<tr>
<td>Page 3-5</td>
<td>Updated paragraph 3.3.5.C for Coil Tab Allowable Wear and acceptable wear tolerance measurement.</td>
</tr>
<tr>
<td>Page 3-7</td>
<td>Updated paragraph 3.3.7.C. to underline 'or equivalent test equipment'. Updated paragraph 3.3.7.C.1 include charge value. Updated paragraph 3.3.7.C.2 change resistance minimum to 10 Megohms.</td>
</tr>
<tr>
<td>Page 3-8</td>
<td>Add Slick P/N to paragraph 3.3.8.E.1.c. Updated paragraph 3.3.8.E.1.d. for recommended temperature.</td>
</tr>
<tr>
<td>Page 4-1</td>
<td>Updated paragraph 4.0.</td>
</tr>
<tr>
<td>Page 7-1</td>
<td>Added alternate part number T-102 to paragraph 7.2.E.</td>
</tr>
<tr>
<td>Page 7-2</td>
<td>Added paragraph 7.5.A for impulse coupling spring installation. Renumbered remaining paragraphs in 7.5.</td>
</tr>
<tr>
<td>Page 7-6</td>
<td>Updated paragraph 7.13.A.</td>
</tr>
<tr>
<td>Page 7-7</td>
<td>Added step to apply Loctite 242 thread locker in paragraph 7.15.E.</td>
</tr>
<tr>
<td>Page T-2, T-3</td>
<td>Added Impulse Coupling Spring. Renumbered remaining reference numbers in Parts List.</td>
</tr>
<tr>
<td>Page T-4</td>
<td>Updated Table Three to add Impulse Coupling Spring and update remaining reference numbers.</td>
</tr>
<tr>
<td>Page T-6, T-7, T-8</td>
<td>Added Impulse Coupling Spring. Renumbered remaining reference numbers in Parts List.</td>
</tr>
<tr>
<td>Page T-9</td>
<td>Updated Table Six to add Impulse Coupling Spring and update remaining reference numbers.</td>
</tr>
<tr>
<td>Page T-10</td>
<td>Added Slick part number to oil callout. Added Consumables Loctite 242 use to include Distributor Block Screws.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Description</th>
<th>Pages Revised</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>This revision changes the company from Unison Industries to Champion Aerospace</td>
<td>26</td>
<td>10/31/08</td>
</tr>
<tr>
<td>E</td>
<td>All</td>
<td>3/01/09</td>
<td></td>
</tr>
</tbody>
</table>
THIS PAGE LEFT BLANK INTENTIONALLY.
Table of Contents (Continued)

4.0
OVERHAUL ... 4-1

4.1
OVERHAUL PROCEDURE - ALL MODEL MAGNETOS ... 4-1

4.1.1
Remove Magneto from Engine ... 4-1

4.1.2
Disassemble Magneto ... 4-1

4.1.3
Discard Parts to Be Replaced ... 4-1

4.1.4
Magneto Reassembly .. 4-2

4.2
ADDITIONAL PROCEDURES - PRESSURIZED MAGNETOS ... 4-2

4.2.1
Discard Parts to Be Replaced ... 4-2

4.2.2
Inlet Nozzle .. 4-2

4.2.3
Orifice Vent .. 4-2

4.2.4
Inspect Interior of Magneto .. 4-2

4.2.5
Harness Cap O-Ring ... 4-2

4.2.6
Pressure Test Magneto .. 4-2

5.0
REMOVING MAGNETO FROM ENGINE ... 5-1

6.0
MAGNETO DISASSEMBLY ... 6-1

6.0.1
General Order of Disassembly ... 6-1

6.1
REMOVE IMPULSE COUPLING ... 6-1

6.2
REMOVE WOODRUFF KEY .. 6-2

6.3
REMOVE DISTRIBUTOR HOUSING ASSEMBLY ... 6-2

6.4
REMOVE DISTRIBUTOR BLOCK ASSEMBLY .. 6-2

6.5
REMOVE CONDENSER .. 6-2

6.6
REMOVE ROTOR GEAR .. 6-3

6.7
REMOVE CONTACT BREAKER ASSEMBLY .. 6-3

6.7.1
Impulse Coupled and Direct Drive Magnetos ... 6-3

6.7.2
Retard Breaker Magnetos .. 6-3

6.7.3
Tachometer Drive Magnetos .. 6-3

6.8
REMOVE ROTOR ASSEMBLY .. 6-3

6.9
REMOVE BEARINGS FROM SHAFT .. 6-4

6.10
REMOVE COIL .. 6-4

6.11
REMOVE AIR VENTS .. 6-4

6.12
REMOVE OIL SEAL .. 6-4

7.0
MAGNETO ASSEMBLY .. 7-1

7.0.1
General Order of Assembly ... 7-1

7.1
ASSEMBLE BEARINGS ONTO SHAFT .. 7-1

7.2
INSTALL ROTOR SHAFT ASSEMBLY .. 7-1

7.3
INSTALL OIL SEAL .. 7-2

7.4
INSTALL WOODRUFF KEY ... 7-2

7.5
ASSEMBLE IMPULSE COUPLING .. 7-2

7.6
INSTALL IMPULSE COUPLING ... 7-2

7.7
INSTALL COIL .. 7-2

7.8
INSTALL CONTACT POINTS .. 7-3

7.8.1
Primary Contact Points - All Magnetos .. 7-3

7.8.2
Retard Breaker Contact Points - Retard Breaker Magnetos Only ... 7-3

7.8.3
Tachometer Drive Contact Points - Tachometer Drive Magnetos Only .. 7-3

7.9
INSTALL ROTOR CAM .. 7-3

7.10
TIME THE MAGNETO ... 7-3

7.10.1
Set Primary Points - All Magnetos .. 7-3

7.10.2
Set Secondary Points - Retard Breaker Magnetos Only ... 7-4

7.10.3
Set Tachometer Drive Points - Tachometer Drive Magnetos Only ... 7-5
Table of Contents (Continued)

7.11 INSTALL CONDENSER ... 7-6
7.12 DISTRIBUTOR GEAR ASSEMBLY ... 7-6
7.13 ASSEMBLE DISTRIBUTOR BLOCK .. 7-6
7.14 ALIGN ROTOR GEAR .. 7-6
7.15 ALIGN DISTRIBUTOR GEAR .. 7-7
7.16 CONNECT CONDENSER WIRE .. 7-7
7.17 CONNECT RETARD CONTACT WIRE 7-7
7.18 CONNECT TACHOMETER CONTACT WIRE 7-8
7.19 ATTACH DISTRIBUTOR HOUSING - NON-PRESSURIZED MAGNETOS ... 7-8
7.20 ATTACH DISTRIBUTOR HOUSING - PRESSURIZED MAGNETOS .. 7-8
7.21 SECURE DISTRIBUTOR HOUSING ... 7-8

8.0 POST-ASSEMBLY TESTING .. 8-1
8.1 PRE-TEST PREPARATION .. 8-1
8.2 IMPULSE COUPLING ... 8-1
8.3 COMING-IN SPEED ... 8-1
8.4 HIGH-SPEED TEST ... 8-1
8.5 LONG-TERM TEST ... 8-1
8.6 TEMPERATURE TEST ... 8-1
8.7 PRESSURE TESTING - PRESSURIZED MAGNETOS ONLY 8-1
8.8 PREFLIGHT OPERATIONAL CHECK 8-2

9.0 POSTFLIGHT OPERATIONAL CHECK .. 9-1
9.1 MAINTENANCE CHECKLIST .. 9-1

10.0 TROUBLESHOOTING GUIDE ... 10-1
10.1 TROUBLESHOOTING GUIDE ... 10-1 - 10-7

11.0 TABLES .. T-1
 TABLE ONE .. T-1
 TABLE TWO ... T-2 - T-3
 TABLE THREE .. T-4
 TABLE FOUR .. T-5
 TABLE FIVE .. T-6 - T-8
 TABLE SIX .. T-9
 TABLE SEVEN ... T-10
0.0 HOW TO USE THIS MANUAL

All rights reserved. This manual is produced exclusively for use with Champion Aerospace Magneto
donors and/or Ignition Harnesses. It may not, in whole or in part, be copied, "photocopied, reproduced, translated or reduced to any electronic medium or machine readable form without prior consent, in writing, from Champion Aerospace.

WARNING: IMPROPER OR UNAUTHORIZED APPLICATIONS OF THE INFORMATION CONTAINED IN THIS MANUAL MAY RESULT IN LOSSES OR DAMAGES TO THE USER.

The accuracy and applicability of this manual has not been verified for any assembly, component or part manufactured by Champion Aerospace. Any use of this manual for other than its intended purpose or for performing any installation, maintenance, replacement, adjustment, inspection or overhaul of any assembly, component or part manufactured by Champion Aerospace is not approved, endorsed or sanctioned by Champion Aerospace.

No liability will be assumed by Champion Aerospace for actual, consequential or other types of damages directly or indirectly resulting from the unauthorized use of this manual for other than its intended purposes.

When performing installation, maintenance, replacement, adjustment, inspection or overhaul of any Champion Aerospace assembly, component or part, it is imperative that the latest revision of the appropriate Champion Aerospace manual or product support document be referenced. Contact Champion Aerospace to be sure you have the latest manual or support document revision before performing any work.

All reasonable attempts were made to make this manual as complete and accurate as possible. If you have any questions, comments, corrections or require clarification of any information contained herein, please write to Champion Aerospace LLC; 1230 Old Norris Road, Liberty, SC, USA 29657, or email slicksupport@champaero.com.

0.2 HOW TO USE THIS MANUAL

The procedures outlined in this manual are generalized for all models of 4300/6300 Series Slick Magnetos, using only genuine Champion Aerospace manufactured parts. This manual must not be used to maintain or overhaul a Slick Magneto that contains parts not manufactured by Champion Aerospace. Specific part numbers are detailed in the Tables located after the main text.

Use only genuine Champion Aerospace manufactured parts obtained from Champion Aerospace Approved sources.

Slick parts are produced and inspected under rigorous procedures to insure airworthiness and suitability in Slick magnetos. Parts purchased from sources other than Champion Aerospace, even though outwardly identical in appearance may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in a Slick magneto. Salvaged magneto parts, reworked parts obtained from Champion Aerospace approved sources, or parts the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures, or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render service work with this part, even though origianlly manufactured by Champion Aerospace, unsuitable or unsafe for use in a Slick magneto. Champion Aerospace expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-Champion Aerospace approved parts.

Slick magnetos are engineered so that mechanical parts wear at a balanced rate. Consistent and complimentary wear patterns establish the recommended maintenance intervals defined in Champion Aerospace service literature, therefore used, service worn parts should never be used to troubleshoot or repair a magneto, nor should original parts be replaced by used service worn parts on magnetos being returned to service. Further, non-Champion Aerospace manufactured parts may wear at uneven and different rates than original Champion Aerospace manufactured parts, making Champion Aerospace service literature an inappropriate guide to proper maintenance. Parts not manufactured by Champion Aerospace, even if FAA/PMA Approved, may not fit or operate like original Champion Aerospace manufactured parts. FAA testing of PMA parts does not require operation on an engine or flight tests and does not require the test duration to exceed the maintenance intervals called out in Champion Aerospace literature. For these reasons, used service worn parts or parts not manufactured by Champion Aerospace may adversely affect magneto reliability in ways not anticipated by Champion Aerospace and its service literature.

The information in this manual is divided into 10 sections. Section One provides basic technical reference on the design and operation of Slick Magnetos. Section Two illustrates tools needed to correctly perform inspection and maintenance.

Detailed instructions for removing the magnetos from the engine, magneto disassembly and magneto reassembly are contained in Sections Five, Six and Seven, respectively. Maintenance and Overhaul schedules and procedures are detailed in Sections Three and Four, respectively. The instructions in Sections Three and Four refer to procedures outlined in the Magneto Disassembly (Section Six) and Magneto Assembly (Section Seven) portions of this manual. It is recommended that this entire manual be thoroughly read before beginning any inspection or maintenance procedure.
After any inspection or maintenance is done on Slick Magnetos, the testing procedures in Section Eight should be performed completely.

The Maintenance Checklist located in Section Nine provides a summarized schedule for 100 and 500-hour inspections. This checklist should be copied and attached to the engine log book at the 100 and 500-hour inspections.

Section 10, Troubleshooting, is provided as a reference guide for diagnosing ignition problems.

0.3 RELEVANT PUBLICATIONS

Champion Aerospace L-1318 Consolidated Application Data

0.4 SYSTEM OVERVIEW

Champion Aerospace has been an innovative leader in the design and manufacture of aircraft ignition systems for over 25 years. Champion Aerospace, not merely assembles a superior product consistently specified by quality conscious OEMs.

VERTICALLY INTEGRATED MANUFACTURING. Champion Aerospace manufactures nearly every component in its magnetos and harnesses. This in-house manufacturing process allows Champion Aerospace to control quality to precise tolerances from raw material to finished product, setting industry standards.

DESIGN FEATURES

- Smaller and Lighter
 Champion Aerospace's unique design allows for a dimensionally smaller magneto, resulting in easier installation and lighter weight-as much as one pound lighter than competitive units.

- Radio Noise Suppression
 Slick Magnetos feature superior noise suppression, eliminating the need for magneto filters.

- Easy to Maintain
 Slick Magnetos use up to 50% fewer parts than competitive units. In addition, almost 70% of the parts in any Slick Magneto are interchangeable with the comparable parts in other current production Slick Magnetos.

- High-Altitude Performance
 Slick Pressurized Magnetos maintain low altitude ambient pressure inside the magneto to reduce the likelihood of high altitude misfire.

RELIABILITY
Champion Aerospace selects materials that are known for their reliability and durability with proper installation and compliance with maintenance procedures. Slick Magnetos should last the life of the engine before overhaul or replacement is required.

A COMPLETE OFFERING
Champion Aerospace Magnetos have applications on nearly all piston engines. Champion Aerospace Ignition Components are available in the following configurations:

- Complete Upgrade Kits: Cost saving kits including two magnetos, a complete harness, plugs, and all mounting hardware.

- Single magnetos and harnesses. Timing pins and mounting hardware included for easy installation.

- Complete parts supply for all current production Slick and non-Slick Magnetos.

WORLDWIDE NETWORK
Champion Aerospace Ignition Systems are available through an international network of aircraft distributors that offer outstanding product support, delivery and service. See Champion Aerospace Distributor List Form L-1051 for details.

FACTORY TECHNICAL ASSISTANCE
Champion Aerospace technical experts are available to assist you. Please contact our Piston Products Support line at slicksupport@champaero.com.
1.0 TECHNICAL REFERENCE

1.1 GENERAL

Slick 4300/6300 Series Aircraft Magnetos are manufactured by Champion Aerospace for use on 4- and 6-cylinder aircraft engines. Slick Magnetos are specified as OEM equipment by aircraft engine manufacturers. Each magneto is identified with a data plate affixed to the side of the magneto frame. The data plate contains serial number and model number information, lag angle of the impulse coupling, shaft rotation direction (L indicates counterclockwise shaft rotation; R indicates clockwise shaft rotation). Customer part numbers are also provided on the data plate.

All current production Slick Magnetos are provided as new units, identified by a red data plate.

1.2 THEORY OF OPERATION

The magneto is a completely self-contained ignition generating device. Typically, two magnetos are installed on each aircraft engine for redundancy. When the aircraft engine crankshaft rotates, gears located in the engine accessory case turn the magneto rotor shaft containing permanent magnets. With the rotating shaft, a magnetic field is produced that is transformed into high tension current through primary and secondary coil windings. The high tension current is distributed to the appropriate cylinder through a distributor block assembly and ignition cables.

A two-lobe cam and two-pole rotating magnet assembly are used to generate magnetic flux and trigger the high tension spark energy. Four-cylinder magnetos are driven at engine speed and produce four sparks through 720 degrees of crankshaft rotation. Six-cylinder magnetos are driven at one and one half times engine speed and produce six sparks through 720 degrees of engine crankshaft rotation. Slick Magnetos are constant timing ignition devices once the engine has started. The magneto is typically timed to fire at an advance timing position for maximum power of the aircraft engine.

A typical Slick Magneto will produce in excess of 25,000V at normal speed and although simple in outward appearance and construction, the magneto is a complicated electromechanical device. The size and shape of the rotating magnet head assembly, magnet material selection, pole lamination design, ignition coil design and capacitor design are all equally important in determining the efficiency of the device. Electrically, the magneto is a balanced LRC circuit which should not be altered from its original condition. Champion Aerospace goes to great lengths to ensure that product and design improvements are retrofittable to prior magneto models.

1.2.1 LAG ANGLE-IMPULSE COUPLED MAGNETOS

The impulse coupling is a mechanical device to assist in engine starting. At low cranking speed, the magneto impulse coupling retards the magneto ignition timing until the engine crankshaft is at its proper position for starting. The lag angle, noted on the magneto dataplate, is the impulse coupling’s retard angle measured in degrees. After engine start, the impulse coupling disengages and returns the magneto to normal engine timing.

1.2.2 LAG ANGLE-RETARD BREAKER MAGNETOS

The retard breaker assembly is an electrical device powered by the aircraft battery, used to aid in starting the engine. At low cranking speed, the retard breaker retards the magneto ignition timing until the engine crankshaft is at its proper position for starting. The lag angle, noted on the magneto dataplate, is the retard breaker’s retard angle measured in degrees. When the engine starter disengages, the retard breaker assembly is also disengaged and the magneto returns to normal engine timing.

1.2.3 ROTATION

Rotation specifies the direction that the magneto rotor shaft turns when viewed from the mounting end of the magneto. Left-Hand Rotation is counterclockwise when viewed from the magneto mounting end; Right-Hand Rotation is clockwise when viewed from the magneto mounting end. Important. Check the dataplate on the magneto being replaced for the shaft rotation. Replace with a magneto with the same rotation.

1.3 MAGNETO PART NUMBERING

Current production magnetos have four digits in the part number and an optional suffix. The first two digits indicate the Series:

- 43xx - 4300 Series for four-cylinder engines
- 63xx - 6300 Series for six-cylinder engines

The last two numbers indicate the model number.

Example: 4371 - 4300 Series four-cylinder, model number 71
6310 - 6300 Series six-cylinder, model number 10
1.4 MAGNETO SERIAL NUMBERS

Slick Magnetos have an eight-digit serial number. Serial numbers indicate date of manufacture as follows:

Eight-Digit Serial Numbers Slick Magnetos manufactured on or after January 1, 1988 have an 8-digit serial number. The first two digits indicate the year of manufacture, the following 2 digits indicate the month and the remaining digits are the sequence number.

EXAMPLE: 91 01 0025

Sequence Number

January

1991

NOTE: SUBSTITUTION OF NON-CHAMPION AEROSPACE PARTS MAY ADVERSELY AFFECT THE PERFORMANCE AND RELIABILITY OF THE MAGNETO.
2.0 REQUIRED TOOLS

T-100 Assembly and Timing Kit includes:

<table>
<thead>
<tr>
<th>P/N</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>T101</td>
<td>Bearing Assembly Plug</td>
<td>1</td>
</tr>
<tr>
<td>T102</td>
<td>Rotor and Frame Assembling Plug</td>
<td>1</td>
</tr>
<tr>
<td>T103</td>
<td>Oil Seal Assembling Plug</td>
<td>1</td>
</tr>
<tr>
<td>T106</td>
<td>Puller</td>
<td>1</td>
</tr>
<tr>
<td>T117</td>
<td>Base Adapter Plate</td>
<td>1</td>
</tr>
<tr>
<td>T118</td>
<td>Timing Pin</td>
<td>1</td>
</tr>
<tr>
<td>T119</td>
<td>Bushing, Adapter Plate</td>
<td>1</td>
</tr>
<tr>
<td>T121</td>
<td>Bearing Puller (2 Halves)</td>
<td>1</td>
</tr>
<tr>
<td>T122</td>
<td>Wedge extractor</td>
<td>1</td>
</tr>
<tr>
<td>T123</td>
<td>Timing Plug</td>
<td>1</td>
</tr>
<tr>
<td>T125</td>
<td>Assembly Fixture</td>
<td>1</td>
</tr>
<tr>
<td>T150</td>
<td>"E" Gap Gauge</td>
<td>1</td>
</tr>
<tr>
<td>T151</td>
<td>Cam and Rotor Set</td>
<td>1</td>
</tr>
<tr>
<td>T152</td>
<td>Spacer</td>
<td>1</td>
</tr>
<tr>
<td>T153</td>
<td>Alternate Cam and Rotor Set</td>
<td>1</td>
</tr>
<tr>
<td>T155</td>
<td>Rivet Gauge</td>
<td>1</td>
</tr>
<tr>
<td>T509</td>
<td>Spacer (included with T125)</td>
<td>1</td>
</tr>
</tbody>
</table>

REQUIRED TOOLS

T-100 Assembly and Timing Kit includes:

- P/N T101 Bearing Assembly Plug (Qty: 1)
- P/N T102 Rotor and Frame Assembling Plug (Qty: 1)
- P/N T103 Oil Seal Assembling Plug (Qty: 1)
- P/N T106 Puller (Qty: 1)
- P/N T117 Base Adapter Plate (Qty: 1)
- P/N T118 Timing Pin (Qty: 1)
- P/N T119 Bushing, Adapter Plate (Qty: 1)
- P/N T121 Bearing Puller (2 Halves) (Qty: 1)
- P/N T122 Wedge extractor (Qty: 1)
- P/N T123 Timing Plug (Qty: 1)
- P/N T125 Assembly Fixture (Qty: 1)
- P/N T150 "E" Gap Gauge (Qty: 1)
- P/N T151 Cam and Rotor Set (Qty: 1)
- P/N T152 Spacer (Qty: 1)
- P/N T153 Alternate Cam and Rotor Set (Qty: 1)
- P/N T155 Rivet Gauge (Qty: 1)
- P/N T509 Spacer (included with T125) (Qty: 1)
THIS PAGE LEFT BLANK INTENTIONALLY.
3.0 **MAINTENANCE**

3.1 **MAINTENANCE SCHEDULE**

3.1.1 100-HOUR INSPECTION

A. Adjust timing to engine
B. Inspections
 1. Wiring connections and conditions
 2. Vent holes (non-pressurized magnetos)
 3. P-lead attachment
 4. Retard breaker switch wire (retard breaker magnetos)
 5. Inspect tachometer drive wire (tachometer drive magnetos)
 6. Turbo filter used with pressurized magnetos
 7. Inlet nozzle (pressurized magnetos)
 8. Orifice vent (pressurized magnetos)
 9. Pressure check (pressurized magnetos, if required)

3.1.2 500-HOUR INSPECTION - DIRECT DRIVE MAGNETOS

A. Cleaning
B. Ball bearing assembly
C. Rotor
D. Impulse coupling
E. Coil
F. Contact points
G. Condenser
H. Distributor block
I. Carbon brush
J. Lubrication

3.1.3 500-HOUR INSPECTION - IMPULSE COUPLED MAGNETOS

A. Cleaning
B. Ball bearing assembly
C. Rotor
D. Impulse coupling
E. Coil
F. Contact points
G. Condenser
H. Distributor block
I. Carbon brush
J. Lubrication

3.1.4 500-HOUR INSPECTION - RETARD BREAKER MAGNETOS

A. Cleaning
B. Ball bearing assembly
C. Rotor
D. Impulse coupling
E. Coil
F. Primary contact points
G. Retard breaker contact points
H. Condenser
I. Distributor block
J. Carbon brush
K. Lubrication

3.1.5 ADDITIONAL 500-HOUR INSPECTION PROCEDURES FOR PRESSURIZED MAGNETOS

A. Inlet nozzle, orifice vent and turbo filter
B. Inspect inside of magneto for turbocharger contaminants
C. Frame gasket and screw gasket
D. Harness cap O-Ring
E. Pressure testing

3.1.6 500-HOUR INSPECTION - TACHOMETER DRIVE MAGNETOS ONLY

A. Cleaning
B. Ball bearing assembly
C. Rotor
D. Impulse coupling
E. Coil
F. Primary contact points
G. Tachometer drive points
H. Condenser
I. Distributor block
J. Carbon brush
K. Lubrication

3.1.7 OPERATIONAL CHECK - ALL MAGNETOS

A. Before flight or after routine maintenance observe engine operation while running on both magnetos and left or right magneto individually. Both magnetos should demonstrate normal operation and engine should operate within parameters outlined in the engine manufacturer's operating manual. **DO NOT FLY AIRCRAFT IF MAGNETOS ARE NOT FUNCTIONING NORMALLY.**

B. Postflight magneto operational check should be performed after each flight. Observe engine operation while running on both magnetos and left or right individually. Both magnetos should demonstrate normal operation and engine should operate within the parameters outlined in the engine manufacturer's operating manual. **DO NOT FLY AIRCRAFT IF MAGNETOS ARE NOT FUNCTIONING NORMALLY.**

3.2 100-HOUR INSPECTION

The following maintenance procedures should be followed every 100 hours of service or at annual inspection, whichever comes first. Perform maintenance on each magneto.

3.2.1 ADJUST TIMING TO ENGINE

CAUTION: BE SURE IGNITION SWITCH IS IN "OFF" POSITION AND THE CONDENSER LEAD IS GROUNDED.

A. Turn the engine crankshaft in the normal direction of rotation until the No. 1 cylinder is in the full-advance firing position, following engine manufacturer's procedure for timing of magnetos.
3.2.2 INSPECT WIRING CONNECTIONS AND CONDITIONS

Refer to Harness Maintenance Manual L-1499 for complete wiring inspection instructions.

3.2.3 INSPECT VENT HOLES - NON-PRESSURIZED MAGNETOS

Vent holes must be clean and clear of any obstruction. Correct as necessary.

3.2.4 INSPECT P-LEAD ATTACHMENT

The P-lead connects the magneto primary circuit to the airframe ignition switch. If the P-lead is disconnected, the magneto will be "ON" and will fire the spark plug if the propeller is rotated. Possible fatal injury can result. Confirm that the P-lead is securely attached to the condenser stud. Torque P-lead nut to 13-15 in-lbs.

CAUTION: IF 13-15 IN-LBS TORQUE LIMIT IS EXCEEDED, CONDENSER PERFORMANCE MAY BECOME INTERMITTENT OR TOTALLY INOPERATIVE. REPLACE CONDENSER IF TORQUE LIMIT IS EXCEEDED, FOLLOWING INSTRUCTIONS IN SECTIONS 6.5 AND 7.12 OF THIS MANUAL.

Follow airframe manufacturer’s recommendations to ensure the ignition switch and P-lead are operating properly.

3.2.5 INSPECT SWITCH WIRE - RETARD BREAKER MAGNETOS ONLY

The retard breaker lead connects the retard contact points to the ignition vibrator. If this lead is disconnected the starting circuit will become inoperative.

CAUTION: IF 13-15 IN-LBS TORQUE LIMIT IS EXCEEDED, STARTING CIRCUIT MAY BECOME INOPERATIVE.

Follow the airframe manufacturer’s recommendations to ensure that the ignition switch and retard breaker lead are operating properly.

3.2.6 INSPECT TACHOMETER DRIVE CONTACT WIRE - TACHOMETER DRIVE MAGNETOS ONLY

The tachometer lead connects the tachometer drive contact points to the tachometer. If this lead is disconnected, the tachometer will become inoperative. Follow the airframe manufacturer’s recommendations to ensure that the tachometer drive lead is attached properly.

3.2.7 INSPECT TURBO FILTER - PRESSURIZED MAGNETOS ONLY

Inspect for yellow or red color, condensation or free standing water or foreign matter in the filter element. (See Figure 3.2.7). If the filter is contaminated, reference the engine and/or airframe manufacturer’s literature for pressurization system corrective action. Replace turbo filter. If filter shows contamination, the magneto must be removed and inspected for contaminant damage. Follow procedures in Section 3.3 of this manual.

Figure 3.2.7

3.2.8 INSPECT INLET NOZZLE - PRESSURIZED MAGNETOS ONLY

Inspect and clean inlet nozzle to insure it is clean and free of obstruction. (See Figure 3.2.8). Yellow or white particles or any oily film in the inlet nozzle indicates moisture contamination and possible lack of pressurization. Reference the engine and/or airframe manufacturer’s literature for pressurization system corrective action and perform internal magneto inspection if contamination exists.

Figure 3.2.8
3.2.9 INSPECT ORIFICE VENT - PRESSURIZED MAGNETOS ONLY

Inspect and clean orifice vent to ensure it is clean and free of obstruction. Orifice diameter is .025 ± .005 inch. (See Figure 3.2.9.)

3.3 500-HOUR INSPECTION

Follow instructions in Section 5.0, Removing Magneto from Engine. All procedures needed to perform the 500-hour inspections are detailed in Section 6.0, Magneto Disassembly and Section 7.0, Magneto Assembly.

3.3.1 DISASSEMBLY AND CLEANING

NOTE: DISASSEMBLE MAGNETO ONLY TO THE EXTENT REQUIRED TO SUPPORT THIS INSPECTION.

Proceed with magneto disassembly, following instructions in Section 6.0, Magneto Disassembly. When disassembled, return to Section 3.3.2.

3.3.2 INSPECT BALL BEARING ASSEMBLY

A. Inspect ball bearing assembly by rotating rotor shaft. Check for free movement. If rotor shaft binds, sticks or feels loose in bearing cap, replace ball bearing assembly following instructions in Section 7.0, Magneto Assembly.

NOTE: IF BEARINGS ARE REMOVED FROM SHAFT, BEARINGS MUST BE DISCARDED AND REPLACED.

3.3.3 INSPECT ROTOR

Inspect rotor for damaged or worn keyway. Check rotor bearing surfaces for wear.

A. Inspect Oil Seal

Inspect oil seal location on shaft

3.3.4 INSPECT IMPULSE COUPLING - IMPULSE COUPLED MAGNETOS ONLY

A. Clean Impulse Coupling

1. All portions of the impulse coupling must be cleaned, exposing bare metal, to ensure a reliable inspection.

2. Use a suitable grease dissolving solvent to remove all oil or sludge buildups on impulse coupling.

B. Inspect Coupling.
NOTE: IN MANY CASES, STRINGERS, INCLUSIONS AND HEAT CHECKS MAY APPEAR AS SURFACE DISCONTINUITIES ON IMPULSE COUPLING COMPONENTS. THESE CONDITIONS ARE NORMAL AND GENERALLY DO NOT, BY THEMSELVES, REQUIRE IMPULSE COUPLING REPLACEMENT.

1. Using acceptable procedures, inspect the impulse coupling shell for cracks, rust or signs of corrosion. None of these conditions are acceptable. Minor cleaning to remove surface rust is acceptable. Replace impulse coupling as necessary.

2. Inspect impulse coupling spring for breaks, cracks, or rust pitting. None of these conditions are acceptable. Replace impulse coupling spring or impulse coupling as necessary.

3. Inspect the impulse coupling hub for cracks, rust or signs of corrosion. None of these conditions are acceptable. Minor cleaning to remove surface rust is acceptable. Replace impulse coupling as necessary.

4. Inspect the hub shaft and keyway for deformation or damage. Replace impulse coupling as necessary.

5. Inspect impulse coupling pawls. If the latching end that contacts the stop pin in the magneto frame is rounded, peened or excessively worn, replace the impulse coupling.

6. Inspect pawl retaining rivets. If the rivets are loose or show indications of movement, then replace the impulse coupling.

7. Install the T155 Rivet Gauge over the rivet head. (See Figure 3.3.4A.)

8. Align the outer edge of the pawl with the outer edge of the impulse coupling plate. Lift the inner edge of the pawl upward and push the pawl outward. If the inner edge of the pawl is not lifted when the pawl is pushed outward, the gaging will not be accurate. (See Figure 3.3.4A.)

9. Rotate the pawl in an arc while pushing upward and outward on the pawl.

10. If the edge of the pawl is visible beyond or can be felt to extend beyond the edge of the T155 Rivet Gage, then replace the coupling. (See Figure 3.3.4A.)

11. Measure the clearance between the boss on the underside of each (2) impulse pawl and the pawl plate using a feeler gage. Position the latching end of the impulse pawl over the pawl plate as shown in Figure 3.3.4C.
C. Reassemble Impulse Coupling

1. Lubricate the pawl assembly with aircraft engine oil. Ensure that the pawls move freely.
2. Lubricate the hub and spring with aircraft engine oil.
3. Follow reassembly instructions, Section 7.5 of this manual.

D. Inspect Stop Pin

1. Inspect the stop pin for looseness, cracks or corrosion. None of these conditions are acceptable. Replace magneto frame as necessary. (See Figure 3.3.4E.)

2. Inspect the stop pin for flat spots. Flat spots should be measured using a dial caliper or similar measuring device. If the stop pin is worn, with a flat spot larger than 0.050 inches across, the magneto frame must be replaced.

E. Install Impulse Coupling.

Follow instructions in Section 7.6 of this manual to install impulse coupling in magneto.

3.3.5 INSPECT COIL

A. Inspect coil for visible radial cracks. If any cracks are evident, replace coil. (See Figure 3.3.5.)

B. Inspect coil for primary and secondary circuit resistance and continuity. Coil must be replaced if resistance is outside of tolerances or an open exists. Refer to Table Seven for tolerances.

C. Coil Tab Allowable Wear.

Coil tab is 0.018 ± 0.0005 nominal. Allowable wear is 0.001 per 100 hours time in service to a maximum of 0.010 wear with at least 0.008 remaining. If tab is worn beyond limits, replace coil.

Example: Magneto has 200 hours time in service. Coil tab measures 0.0181 on either side of wear area. Deepest wear point measures 0.0161, giving a wear of 0.0016 (i.e., 0.0181 - 0.0161 = 0.0016), which is acceptable and allows the coil to be returned for another 500-hour interval.
3.3.6 INSPECT CONTACT POINTS

A. Primary Contact Points (All Magnetos)

NOTE: In a retard breaker magneto, the primary contact points are secured by a BLACK anodized screw.

1. Inspect primary contact points for signs of pitting and discoloration. If points are not discolored and have a white, frosty surface around the edges, points are functioning properly and can be reused.

2. If points are blue (indicating excessive arcing) or pitted, they should be discarded. Replace primary contact point assembly, condenser and cam.

B. Retard Breaker Contact Points (Retard Breaker Magnetos Only)

NOTE: In a retard breaker magneto, the retard breaker contact points are secured by a SILVER screw.

1. Inspect retard breaker contact points for signs of pitting and discoloration. If points are not discolored and have a white, frosty surface around the edges, points are functioning properly and can be reused.

2. If points are blue (indicating excessive arcing) or pitted, they should be discarded. Replace retard breaker contact point assembly and cam.

C. Tachometer Drive Contact Points (Tachometer Drive Magnetos Only)

1. Inspect tachometer drive contact points for signs of pitting and discoloration. If points are not discolored and have a white, frosty surface around the edges, points are functioning properly and can be reused.

2. If points are blue (indicating excessive arcing) or pitted, they should be discarded. Replace tachometer drive contact point assembly and cam.

3.3.7 INSPECT CONDENSER

A. Clean Condenser

1. If the external surfaces of the condenser are dirty, clean with light soapy water.

2. Rinse soapy water and dirt from condenser surfaces with clear water and pat dry before reinstallation into the magneto housing.

B. Condenser Inspection

1. Inspect the condenser for signs of corrosion. This condition is cause for component rejection. (See Figure 3.3.7).

2. Inspect the condenser wire for chafing, frayed insulation, or exposed wires that could contact frame. Replace as necessary.

NOTE: Current condensor design utilizes a D shaped insulator to prevent damage from Over-Torquing of P-lead stud.
C. Test Capacitor.

Test the electrical properties of the capacitor using the GenRad Digibridge 1157 component analyzer and a megohmmeter, or equivalent test equipment.

1. Capacitance value should be measured at room temperature and charged to 400 ± 10 VDC. The service limit of the capacitor is .315 to .385 microfarad.

2. Test the insulation resistance of the capacitor using a megohmmeter. The resistance measured between the capacitor stud and shell should be 10 Megohms minimum at 135 ± 5 VDC.

NOTE: NO FIELD REPAIRS OF THE CONDENSER ARE APPROVED. UNDER NO CIRCUMSTANCES SHOULD THE CONDENSER LEAD BE RESOLDERED TO THE CONDENSER STUD IF IT BECOMES DETACHED. SOLDERING THIS LEAD CAN RESULT IN ELECTRICAL BREAKDOWN INSIDE THE CAPACITOR AND/OR LOSS OF HERMETIC INTEGRITY.

D. Install Condenser.

Install condenser following instructions in Section 7.12 of this manual.

3.3.8 INSPECT DISTRIBUTOR BLOCK ASSEMBLY

A. Clean block assembly.

1. Disassemble and clean the distributor block bearing bar using standard non-filming, non-conductive cleaner. Clean distributor gear with soapy water and rinse with clear water.

CAUTION: DO NOT PUT CLEANER IN EITHER BRONZE OILITE BUSHING. THESE BUSHINGS ARE IMPREGNATED AT THE FACTORY AND CLEANER WILL DRAW THE LUBRICANT OUT OF THE BUSHING.

2. Using a cotton swab or "Q-Tip", clean all surfaces free of dirt, oil, carbon dust and other contaminants.

B. Inspect Distributor Block.

1. Visually inspect the block for cracks or other physical damage. Replace block assembly as necessary.

2. Inspect the brass electrode posts for signs of physical wear. Replace block assembly as necessary. During normal operation, the post will experience an electrical-metal transfer with the distributor gear electrode. This condition is normal and not cause for rejection. (See Figure 3.3.8.)

3. Inspect bearing inside diameter. Bearing ID should be 0.246 ± 0.002/-0.001 inch.

4. Inspect oilite bushing for gumming oil condition. The bushing should be free of contamination and the gear should turn freely in the distributor block with no appreciable drag.

CAUTION:

ELECTRODE POSTS

OILITE BUSHING
(BEARING ID)

Figure 3.3.7A

Figure 3.3.8

2. Using a cotton swab or "Q-Tip", clean all surfaces free of dirt, oil, carbon dust and other contaminants.

B. Inspect Distributor Block.

1. Visually inspect the block for cracks or other physical damage. Replace block assembly as necessary.

2. Inspect the brass electrode posts for signs of physical wear. Replace block assembly as necessary. During normal operation, the post will experience an electrical-metal transfer with the distributor gear electrode. This condition is normal and not cause for rejection. (See Figure 3.3.8.)

3. Inspect bearing inside diameter. Bearing ID should be 0.246 ± 0.002/-0.001 inch.

NOTE: NO FIELD REPAIRS OF THE CONDENSER ARE APPROVED. UNDER NO CIRCUMSTANCES SHOULD THE CONDENSER LEAD BE RESOLDERED TO THE CONDENSER STUD IF IT BECOMES DETACHED. SOLDERING THIS LEAD CAN RESULT IN ELECTRICAL BREAKDOWN INSIDE THE CAPACITOR AND/OR LOSS OF HERMETIC INTEGRITY.

D. Install Condenser.

Install condenser following instructions in Section 7.12 of this manual.

3.3.8 INSPECT DISTRIBUTOR BLOCK ASSEMBLY

A. Clean block assembly.

1. Disassemble and clean the distributor block bearing bar using standard non-filming, non-conductive cleaner. Clean distributor gear with soapy water and rinse with clear water.

CAUTION: DO NOT PUT CLEANER IN EITHER BRONZE OILITE BUSHING. THESE BUSHINGS ARE IMPREGNATED AT THE FACTORY AND CLEANER WILL DRAW THE LUBRICANT OUT OF THE BUSHING.

2. Using a cotton swab or "Q-Tip", clean all surfaces free of dirt, oil, carbon dust and other contaminants.

B. Inspect Distributor Block.

1. Visually inspect the block for cracks or other physical damage. Replace block assembly as necessary.

2. Inspect the brass electrode posts for signs of physical wear. Replace block assembly as necessary. During normal operation, the post will experience an electrical-metal transfer with the distributor gear electrode. This condition is normal and not cause for rejection. (See Figure 3.3.8.)

3. Inspect bearing inside diameter. Bearing ID should be 0.246 ± 0.002/-0.001 inch.

NOTE: NO FIELD REPAIRS OF THE CONDENSER ARE APPROVED. UNDER NO CIRCUMSTANCES SHOULD THE CONDENSER LEAD BE RESOLDERED TO THE CONDENSER STUD IF IT BECOMES DETACHED. SOLDERING THIS LEAD CAN RESULT IN ELECTRICAL BREAKDOWN INSIDE THE CAPACITOR AND/OR LOSS OF HERMETIC INTEGRITY.

D. Install Condenser.

Install condenser following instructions in Section 7.12 of this manual.

3.3.8 INSPECT DISTRIBUTOR BLOCK ASSEMBLY

A. Clean block assembly.

1. Disassemble and clean the distributor block bearing bar using standard non-filming, non-conductive cleaner. Clean distributor gear with soapy water and rinse with clear water.

CAUTION: DO NOT PUT CLEANER IN EITHER BRONZE OILITE BUSHING. THESE BUSHINGS ARE IMPREGNATED AT THE FACTORY AND CLEANER WILL DRAW THE LUBRICANT OUT OF THE BUSHING.

2. Using a cotton swab or "Q-Tip", clean all surfaces free of dirt, oil, carbon dust and other contaminants.

B. Inspect Distributor Block.

1. Visually inspect the block for cracks or other physical damage. Replace block assembly as necessary.

2. Inspect the brass electrode posts for signs of physical wear. Replace block assembly as necessary. During normal operation, the post will experience an electrical-metal transfer with the distributor gear electrode. This condition is normal and not cause for rejection. (See Figure 3.3.8.)

3. Inspect bearing inside diameter. Bearing ID should be 0.246 ± 0.002/-0.001 inch.

NOTE: NO FIELD REPAIRS OF THE CONDENSER ARE APPROVED. UNDER NO CIRCUMSTANCES SHOULD THE CONDENSER LEAD BE RESOLDERED TO THE CONDENSER STUD IF IT BECOMES DETACHED. SOLDERING THIS LEAD CAN RESULT IN ELECTRICAL BREAKDOWN INSIDE THE CAPACITOR AND/OR LOSS OF HERMETIC INTEGRITY.

D. Install Condenser.

Install condenser following instructions in Section 7.12 of this manual.

3.3.8 INSPECT DISTRIBUTOR BLOCK ASSEMBLY

A. Clean block assembly.

1. Disassemble and clean the distributor block bearing bar using standard non-filming, non-conductive cleaner. Clean distributor gear with soapy water and rinse with clear water.

CAUTION: DO NOT PUT CLEANER IN EITHER BRONZE OILITE BUSHING. THESE BUSHINGS ARE IMPREGNATED AT THE FACTORY AND CLEANER WILL DRAW THE LUBRICANT OUT OF THE BUSHING.

2. Using a cotton swab or "Q-Tip", clean all surfaces free of dirt, oil, carbon dust and other contaminants.
3. Clean the end of the electrode to remove electrical deposits.

4. Inspect rotor shaft outside diameter. Shaft OD should be 0.2420 +0.0003/-0.0001 inch.

D. Inspect Bearing Bar.

1. Bearing ID should be 0.246 +0.002/-0.001 inch.

2. Visually inspect for cracks or other physical damage. Replace assembly as necessary.

3. Make sure the bearing bar is free of all oil (other than that described in paragraph 3 below) and carbon dust prior to reassembly.

E. Lubrication

1. Reoil bearing bar and distributor block bearing as follows:
 a. Wipe bearing ID clean of any gummy residue.
 b. For bearing bars, install rubber cork in open end of bearing on side opposite the coil tab dielectric skirt. Cork to be shaped to cover no more than 1/16" depth of bearing ID. (Not required for closed end Distributor Block bearing.)
 c. Fill open end of bearing with Exxon Terrestic Grade 100 oil (Slick P/N R5008, 32 oz.).
 d. Bake oil filled part in oven for 2-3 hours at 200°F +20°F/-10°F.
 e. Remove from oven and allow to cool to room temperature before removing cork and decanting remaining lubricant from ID of bearing.
 f. Clean any excess oil from dielectric surfaces of block or bar.
 g. Store oiled parts in clean containers with non-absorbent packing.

3.3.9 INSPECT CARBON BRUSH

A. Visually inspect the carbon brush. Overall length of the carbon brush must be greater than 19/64 inch and the OD of the brush diameter must be uniform. (See Figure 3.3.9). Carbon brushes that do not meet these limits must be replaced. Reference Section 7.13 of this manual.

B. Visually inspect the loading spring. Overall free standing length should be greater than 19/32 inch. (See Figure 3.3.9A.) Look for flat spots on the spring windings. Springs that appear worn or do not meet the overall length requirements must be replaced. Reference Section 7.13 of this manual.

C. Reinstall following Section 7.13B.

3.3.10 INSPECT FOR STRUCTURAL DAMAGE

Check magneto frame and distributor housing for cracks or other damage. Inspect threaded areas to ensure threads are intact and not damaged. Replace as necessary, following instructions in Assembly Section of this manual. Complete magneto reassembly, Section 7.

3.4 ADDITIONAL 500-HOUR INSPECTION PROCEDURES FOR PRESSURIZED MAGNETOS

3.4.1 INLET NOZZLE

Inspect and clean inlet nozzle to insure it is clean and free of obstruction. (See Figure 3.4.1). Yellow or white particles or an oily film in the inlet nozzle indicates moisture contamination and possible lack of pressurization. Reference engine and/ or airframe manufacturer’s literature for pressurization system corrective action.
3.4.2 ORIFICE VENT

Inspect and clean orifice vent to insure it is clean and free of obstruction. Orifice diameter is 0.025 ± 0.005 inch. (See Figure 3.4.2).

3.4.3 TURBO FILTER

Inspect for yellow or red color, condensation or free standing water or foreign matter in the filter element. (See Figure 3.4.3.) If the filter is contaminated, reference the engine and/or airframe manufacturer’s literature for pressurization system corrective action. Replace turbo filter. If filter shows contamination, the magneto must be removed and inspected for contaminant damage. Follow procedures in Section 3.3 of this manual.

3.4.4 GASKETS

Inspect frame gasket for wear and replace as necessary. Replace ONLY with Champion Aerospace Replacement Gaskets. Inspect screw gaskets for wear and replace as necessary. Replace ONLY with Champion Aerospace Replacement Gaskets and Champion Aerospace Mounting Screws. For latest configuration of housing gasket, screws, and O-ring, consult Table Five.

3.4.5 O-RING

Inspect harness cap O-ring for wear and replace as necessary.
THIS PAGE LEFT BLANK INTENTIONALLY.
4.0 OVERHAUL

Slick 4300/6300 Series Magnetos should be completely overhauled when conditions indicate. Magnetos must be overhauled at every engine overhaul. In no case should magnetos have in-service times greater than the TBO hour limit for the engine on which it is installed.

Magneto must be overhauled after a lightning strike on the aircraft, a sudden engine stoppage, prop strike, or immersion.

The following parts must be replaced at overhaul. Additional parts may require replacement depending on conditions as determined during magneto inspection. Install only Champion Aerospace Replacement Parts.

ALL MAGNETOS
- Condenser
- Double Sealed Bearing
- Bearing Cap Assembly
- Coil
- Impulse Coupling
- Oil Seal
- Contact Point Kit
- Rotor Gear
- Distributor Block and Gear

PRESSURIZED MAGNETOS:
In addition to above parts, the following components must be replaced at every overhaul.
- Frame Gasket
- Housing Screw
- Harness Cap ‘O’ Ring

A complete list of parts that must be replaced at overhaul can be found in Table One (4300 Series) and Table Four (6300 Series). Refer to tables One through Seven as you overhaul your Slick Magneto.

Use only genuine Champion Aerospace manufactured parts obtained from Champion Aerospace approved sources. Genuine Champion Aerospace parts are produced and inspected under rigorous procedures to insure airworthiness and suitability in Slick magnetos. Parts purchased from sources other than Champion Aerospace, even though outwardly identical in appearance may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in a Slick magneto. Salvaged magneto parts, reworked parts obtained from non-Champion Aerospace approved sources, or parts the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures, or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render service work with this part, even though originally manufactured by Champion Aerospace, unsuitable or unsafe for use in a Slick magneto. Champion Aerospace expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-Champion Aerospace approved parts.

Slick magnetos are engineered so that mechanical parts wear at a balanced rate. Consistent and complimentary wear patterns establish the recommended maintenance intervals defined in Champion Aerospace service literature, therefore used, service worn parts should never be used to troubleshoot or repair a magneto, nor should original parts be replaced by used service worn parts on magnetos being returned to service. Further, non-Champion Aerospace manufactured parts may wear at uneven and different rates than original Champion Aerospace manufactured parts, making Champion Aerospace service literature an inappropriate guide to proper maintenance. Parts not manufactured by Champion Aerospace, even if FAA/PMA Approved, may not fit or operate like original Champion Aerospace manufactured parts. FAA testing of PMA parts does not require operation on an engine or flight tests and does not require the test duration to exceed the maintenance intervals called out in Champion Aerospace literature. For these reasons, used service worn parts or parts not manufactured by Champion Aerospace may adversely affect magneto reliability in ways not anticipated by Champion Aerospace and its service literature.

NOTE: AN ALTERNATIVE TO OVERHAUL IS COMPLETE MAGNETO REPLACEMENT WITH A NEW SLICK MAGNETO. NEW SLICK MAGNETOS INCORPORATE ALL THE LATEST DESIGN FEATURES AND ARE A COST EFFECTIVE ALTERNATIVE TO OVERHAUL.

4.1 OVERHAUL PROCEDURE - ALL MODEL MAGNETOS

4.1.1 REMOVE MAGNETO FROM ENGINE
Follow procedures in Section 5.0, Removing Magneto from Engine.

4.1.2 DISASSEMBLE MAGNETO
Proceed with magneto disassembly, following instructions in Sections 6.0.

4.1.3 DISCARD PARTS TO BE REPLACED
Reference Table One, 4300 Series Overhaul Parts Replacement List of Table Two, 6300 Series Overhaul Parts Replacement List. Discard all parts removed for overhaul replacement and REPLACE WITH NEW CHAMPION AEROSPACE PARTS.

Champion Aerospace does not authorize the use of “used” parts as replacement parts for other magnetos. In many cases, subcomponent parts are matched at the factory and will function improperly if used in conjunction with other similar parts.
NOTE: CHAMPION AEROSPACE AUTHORIZES THE USE OF ONLY CHAMPION AEROSPACE REPLACEMENT PARTS IN THE MAINTENANCE AND/OR OVERHAUL OF CHAMPION AEROSPACE EQUIPMENT. USE OF PARTS OR FASTENERS NOT MANUFACTURED OR APPROVED BY CHAMPION AEROSPACE voids any and all warranties and may adversely affect the performance and jeopardize the airworthiness of the magneto.

4.1.4 MAGNETO REASSEMBLY

Proceed with magneto reassembly, following instructions in Section 7.0 of this manual.

4.2 ADDITIONAL PROCEDURES - PRESSURIZED MAGNETOS

In addition to the overhaul procedures outlined above, the following must be performed.

4.2.1 DISCARD PARTS TO BE REPLACED

Discard parts as listed in Table Four.

4.2.2 INLET NOZZLE

Inspect and clean inlet nozzle to ensure it is clean and free of obstruction. Presence of dirt or other contaminants indicates that the magneto pressurization system is not functioning properly. Consult engine manufacturer’s manuals for corrective action.

4.2.3 ORIFICE VENT

Inspect and clean orifice vent to ensure it is clean and free of obstruction. Orifice diameter is .025 ± .005 inch.

4.2.4 INSPECT INTERIOR OF MAGNETO

Inspect inside of magneto for corrosion, oil and other turbocharger contaminants. Clean if necessary and inspect aircraft pressurization system according to the engine and/or airframe manufacturer’s recommended procedures.

4.2.5 HARNESS CAP O-RING

Inspect O-ring in harness cap for cuts or other conditions that would inhibit a proper seal. Replace O-ring as necessary.

4.2.6 PRESSURE TEST MAGNETO

Pressure test magneto using instructions in Section 8.0 of this manual.
5.0 REMOVING MAGNETO FROM ENGINE

A. To remove magneto, proceed as if you were timing the magneto to the engine. Follow the engine manufacturer’s procedure to set the engine to fire cylinder number one, at the timing setting shown on the engine data plate.

B. Remove the harness cap from the magneto by removing the 3 screws that secure it to the magneto. When removing the cap, place a visible mark on the harness cap and an adjacent mark on the distributor housing. Use this mark to ensure that the cap is properly oriented upon reassembly.

C. To remove the magneto from the engine, proceed as follows:

1. Remove the P-lead wire that connects the ignition switch to the magneto condenser.

 Retard breaker magnetos only - Remove the lead that connects the retard contact points to the starting circuit.

 Pressurized magnetos only - Disconnect pressurization tube from magneto.

 Tachometer drive magnetos only - Disconnect tachometer lead or pickup device.

2. Remove the 2 nuts, washers and clamps that secure the magneto to the engine.

 NOTE: THE MAGNETO MUST BE REMOVED FROM THE ENGINE FOR DISASSEMBLY AND INSPECTION.

D. To prevent any contaminant from entering the magneto accessory hole, cover the hole with a suitable material while the magneto is removed from the engine.

CAUTION: EXTRA CARE MUST BE TAKEN TO PREVENT ANY FOREIGN OBJECT FROM PASSING INTO THE ENGINE THROUGH THE MAGNETO ACCESSORY HOLE ON THE ENGINE WHEN THE MAGNETO IS REMOVED.

E. Remove Drive Gear/Lug.

In certain applications, it will be necessary to remove the drive gear/lug from the magneto. If applicable, remove drive gear/lug and save for reinstallation. Inspect drive gear/lug according to the engine manufacturer’s recommended procedures.

 NOTE: DO NOT STRIKE OR EXERT CRUSHING FORCE AGAINST END OF ROTOR SHAFT TO REMOVE DRIVE GEAR.
THIS PAGE LEFT BLANK INTENTIONALLY.
6.0 MAGNETO DISASSEMBLY

Following are disassembly instructions for Slick 4300/6300 Series Magnetos. The directions are generalized and refer to both 4300/6300 Series Magnetos unless specifically noted. Refer to Table Two for specific part numbers and to Table One, Exploded Assembly Diagram.

The following parts must be replaced at overhaul. Additional parts may require replacement depending on conditions as determined during magneto inspection. Install only Champion Aerospace Replacement Parts.

ALL MAGNETOS

Condenser
Double Sealed Bearing
Bearing Cap Assembly Coil
Impulse Coupling (where applicable)
Oil Seal
Contact Point Kit
Rotor Gear
Distributor Block and Gear

PRESSURIZED MAGNETOS:

In addition to above parts, the following components must be replaced at every overhaul.

Frame Gasket
Housing Screw
Harness Cap "O" Ring

A complete list of parts that must be replaced at overhaul can be found in Table One (4300 Series) and Table Four (6300 Series). Refer to tables One through Seven as you overhaul your Slick Magneto.

Use only genuine Champion Aerospace manufactured parts obtained from Champion Aerospace approved sources. Genuine Champion Aerospace parts are produced and inspected under rigorous procedures to insure airworthiness and suitability in Slick magnetos. Parts purchased from sources other than Champion Aerospace, even though outwardly identical in appearance may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in a Slick magneto. Salvaged magneto parts, reworked parts obtained from non-Champion Aerospace approved sources, or parts the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures, or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render service work with this part, even though originally manufactured by Champion Aerospace, unsuitable or unsafe for use in a Slick magneto. Champion Aerospace expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-Champion Aerospace approved parts.

NOTE: AN ALTERNATIVE TO OVERHAUL IS COMPLETE MAGNETO REPLACEMENT WITH A NEW SLICK MAGNETO. NEW SLICK MAGNETOS INCORPORATE ALL THE LATEST DESIGN FEATURES AND ARE A COST EFFECTIVE ALTERNATIVE TO OVERHAUL.

6.0.1 GENERAL ORDER OF DISASSEMBLY

Remove: Impulse Coupling
Woodruff Key
Distributor Housing Assembly
Condenser
Rotor Gear
Contact Breaker Assembly
Rotor Assembly
Bearings from Shaft
Coil
Oil Seal

6.1 REMOVE IMPULSE COUPLING

A. Remove cotter pin, nut, washer, bushing and drive gear where applicable. (Section 5.0E.)

B. Grasp shell of impulse coupling assembly and gently pull the assembly outward to clear the latching ears of the impulse hub assembly. (See Figure 6.1.)
6.1 CAUTION: STRONG SPRING TENSION

C. Turn shell to release spring tension.

D. Remove impulse shell and attached impulse spring.

E. Engage Slick T-106 hub puller into grooves in the hub assembly. Tighten T-106 puller bolt and remove impulse coupling hub assembly. (See Figure 6.1A.)

6.2 REMOVE WOODRUFF KEY

Pry woodruff key from rotor shaft using pliers. (See Figure 6.2.)

6.3 REMOVE DISTRIBUTOR HOUSING ASSEMBLY

A. Remove three long screws and single short screw from distributor housing.

B. Separate distributor housing from magneto frame.

C. Disconnect condenser lead from contact breaker assembly.

D. Retard breaker magnetos only - Disconnect retard breaker switch lead from contact breaker assembly.

E. Tachometer drive magnetos only - Disconnect lead wire from contact points.

6.4 REMOVE DISTRIBUTOR BLOCK ASSEMBLY

Remove two screws and remove distributor bearing bar, distributor gear, distributor block, and spacers from the frame.

6.5 REMOVE CONDENSER

When removing the condenser from the distributor housing, carefully rotate the condenser wire counterclockwise in the same direction as the condenser to eliminate twisting the condenser lead. (See Figure 6.5.)
6.6 REMOVE ROTOR GEAR

Pry rotor gear out of the end of the rotor assembly using two flat-blade screwdrivers.

6.7 REMOVE CONTACT BREAKER ASSEMBLY

6.7.1 IMPULSE COUPLED AND DIRECT DRIVE MAGNETOS

A. Disconnect coil lead wire from contact breaker assembly.

B. Remove screws and washers from breaker assembly.

C. Remove contact breaker assembly from bearing cap.

D. Remove cam by prying straight up with a screwdriver blade. (See Figure 6.7.1.)

6.7.2 RETARD BREAKER MAGNETOS

NOTE: In a retard breaker magneto, the primary contact points are secured by a BLACK anodized screw. The retard breaker contact points are secured by a SILVER screw. (See Figure 6.7.2.)

A. Disconnect coil lead wire from primary contact breaker assembly.

B. Remove cam by prying straight up with a screwdriver blade.

C. Remove screws and washers from primary contact breaker assembly.

D. Remove primary contact breaker assembly.

E. Remove screws and washers from retard breaker contact breaker assembly.

6.7.3 TACHOMETER DRIVE MAGNETOS

A. Disconnect tachometer lead wires from tachometer contact point assembly.

B. Remove cam by prying straight up with screwdriver blade.

C. Remove screws and washers from tachometer contact point assembly.

D. Remove tachometer contact point assembly and spacers.

6.8 REMOVE ROTOR ASSEMBLY

A. Remove two screws and two bearing plate clamps.

B. Press against the drive end of the rotor shaft and withdraw the rotor and bearing cap assembly from the drive frame. (See Figure 6.8.)
6.9 REMOVE BEARINGS FROM SHAFT

A. Place rotor on T-152 spacer. (See Figure 6.9.)

CAUTION: BEARING CAP ASSEMBLY HOLDS A DOUBLE-SEALED BEARING CAPTIVE IN THE BEARING CAP. THIS ASSEMBLY IS PRELUBRICATED AT THE FACTORY WITH SPECIAL GREASE THAT TOLERATES THE OZONE RICH ENVIRONMENT WITHIN THE MAGNETO. THE BEARING CAP AND BEARING ASSEMBLY SHOULD NEVER BE DISASSEMBLED.

B. Press rotor shaft and remove bearing cap assembly. (See Figure 6.9A.)

CAUTION: ROTOR IS MAGNETIZED. DO NOT ALLOW ROTOR TO COME INTO CONTACT WITH METAL.

C. Insert Slick T-121 bearing puller (both halves) between drive end bearing and rotor magnet head.

D. Place rotor and T-121 bearing puller on T-152 spacer.

E. Press rotor shaft and remove drive end bearing.

6.10 REMOVE COIL

A. Inspect coil per Section 3, paragraph 3.3.5. Remove only as required.

B. Remove coil primary ground screw.

C. Using coil wedge extractor T-122, remove coil wedges and lift out coil. (See Figure 6.10.)

6.11 REMOVE AIR VENTS

Remove air vents from magneto.

6.12 REMOVE OIL SEAL

Remove oil seal from magneto.
7.0 MAGNETO ASSEMBLY

7.0.1 GENERAL ORDER OF ASSEMBLY

- Assemble Bearings onto Shaft
- Install Rotor Shaft Assembly
- Install Oil Seal
- Install Woodruff Key
- Assemble Impulse Coupling
- Install Impulse Coupling
- Install Coil
- Install Contact Point Assembly
- Install Rotor Cam
- Install Rotor Gear
- Timing the Magneto
- Install Retard Breaker Lead Wire
 (Retard Breaker Magnetos Only)
- Install Condenser
- Install Distributor Gear Assembly
- Install Distributor Block
- Connect Condenser Wire
- Align Rotor Gear
- Align Distributor Gear
- Attach and Secure the Distributor Housing

7.1 ASSEMBLE BEARINGS ONTO SHAFT

A. Insert the base plate (T-117) and adapter plate bushing (T-119) into the T-100 tool kit base.

B. Place one ball bearing and bearing cap assembly onto the rotor shaft.

C. Insert the rotor shaft into the adapter plate bushing (threaded end down).

D. Place the bearing assembly plug (T-101) onto the exposed end of the rotor shaft. (See Figure 7.1.)

E. Turn T-handle screw to seat the bearings against the bearing shoulders on the rotor shaft.

F. Remove the rotor shaft, adapter bushing, adapter plate and bearing assembly plug from the T-100 tool base.

7.2 INSTALL ROTOR SHAFT ASSEMBLY

A. Place magneto frame in T-100 base (flange down).

B. Position rotor shaft assembly in the magneto frame.

C. Insert rotor and frame assembly plug (T-102) into the T-100 fixture T-handle. (See Figure 7.2.)

D. Turn T-handle until the bearing cap bottoms in the frame.

E. Place T-151 cam and rotor set, or T-102 as applicable, onto the end of the rotor shaft and turn T-handle until the shaft bottoms in magneto frame. (See Figure 7.2.1.)
F. Install bearing clamps and the hold-down screws using Loctite 242 thread locker.

G. Torque screws to 20-24 in-lbs.

7.3 INSTALL OIL SEAL

A. Lubricate oil seal with engine oil.

B. Reverse the magneto on the T-100 base so the flange is facing up.

C. Insert the oil seal over the rotor shaft. The convex center of the seal should face outward from the magneto.

CAUTION: ENSURE THAT THE OIL SEAL IS NOT NICKED OR DAMAGED BY THE EDGES OF THE WOODRUFF KEY SLOT.

D. Press the oil seal flush into the frame using the oil seal assembly plug (T-103) and the T-handle screw. (See Figure 7.3.)

7.4 INSTALL WOODRUFF KEY

Press woodruff key into the key slot of the rotor shaft.

7.5 ASSEMBLE IMPULSE COUPLING

Retard Breaker Magnetos-Proceed to 7.7.

A. Install new impulse coupling spring, as needed, into impulse coupling shell.

CAUTION: STRONG SPRING TENSION

B. Assemble the inner eye of the impulse spring into the grooves in the impulse hub.

C. Set the impulse shell on the hub. There is no tension in the coupling in this position.

D. Hold the shell in one hand and the pawls the thumb and forefinger of the other hand.

E. Pull the hub straight back slowly far enough to clear the projections on the shell.

F. Hold the shell stationary and rotate the hub to wind the spring until the projections on the other section of the pawl plate pass the projections on the shell. (Approximately one-quarter revolution; 90 degrees.)

CAUTION: DO NOT WIND COUPLING MORE THAN 1/4 TURN.

G. Make sure the shell is seated squarely on the hub and turns freely.

7.6 INSTALL IMPULSE COUPLING (If So Equipped)

A. Install impulse coupling assembly on to the rotor shaft.

B. Install impulse washer.

C. Install coupling nut and torque to 120-180 in-lbs to seat coupling onto the rotor shaft. Install cotter pin through hole in rotor shaft. If cotter pin will not align with pin hole within the specified torque range, remove nut, lightly lap the bottom of the nut with emery cloth, and retorque drive nut to specified torque range.

NOTE: ON SOME MAGNETOS, IT WILL BE NECESSARY TO REMOVE THE IMPULSE COUPLING NUT AND WASHER DURING DRIVE GEAR INSTALLATION. LEAVE THE NUT AND WASHER INSTALLED AS IN STEP C, UNTIL AFTER POST-INSPECTION TESTING.

D. Check to see that the coupling is free by snapping it through 3 or 4 times.

7.7 INSTALL COIL

A. Place the frame on the T-100 assembly and timing tool. Insert the coil into the frame, making sure that it is back against the stops. Insert the coil wedges between the bridge and the frame.

B. Drive the two wedges tight, using a hammer and flat punch. Attach the ground wire of the coil to the frame, using screw. Torque to 20 in-lbs.

C. Position the coil high tension lead flush to 1/32 inch below and parallel to the parting surface of the magneto frame. (See Figure 7.7.)
7.8 INSTALL CONTACT POINTS

7.8.1 PRIMARY CONTACT POINTS - ALL MAGNETOS

A. Attach contact point assembly on the bearing cap using appropriate screw.

NOTE: ON RETARD BREAKER MAGNETOS, THE PRIMARY POINTS ARE SECURED WITH A BLACK ANODIZED SCREW.

CAUTION: RETARD BREAKER MAGNETOS USE DIFFERENT LENGTH SCREWS TO SECURE THE CONTACT BREAKER ASSEMBLIES. USE OF INCORRECT MOUNTING SCREWS WILL DAMAGE UPPER MAGNETO BEARING AND CAUSE POSSIBLE MAGNETO FAILURE.

7.8.2 RETARD BREAKER CONTACT POINTS - RETARD BREAKER MAGNETOS ONLY

NOTE: INSTALL PRIMARY POINT ASSEMBLY BEFORE INSTALLING RETARD POINT ASSEMBLY.

A. Place spacer on bearing cap and attach retard contact points assembly using silver screw and plain washer.

B. Do not tighten screws until magneto is timed.

7.8.3 TACHOMETER DRIVE CONTACT POINTS - TACHOMETER DRIVE MAGNETOS ONLY

NOTE: INSTALL PRIMARY POINT ASSEMBLY BEFORE INSTALLING TACHOMETER POINT ASSEMBLY.

A. Place tachometer contact points on bearing cap and secure using two screws and plain washers.

B. Do not tighten screws until magneto is timed.

7.9 INSTALL ROTOR CAM

A. Install cam using a light hammer and T-151 cam and rotor set.

B. Drive the cam until it bottoms in the rotor cam slot. (See Figure 7.9.)

7.10 TIME THE MAGNETO

NOTE: FOR RETARD BREAKER MAGNETOS, THE PRIMARY POINTS MUST BE SET FIRST. THE RETARD (SECONDARY) POINTS ARE SET IN REFERENCE TO THE PRIMARY POINTS AND THE PRIMARY POINTS MUST BE SET CORRECTLY TO ENSURE ACCURACY OF RETARD CONTACT SETTINGS.

7.10.1 SET PRIMARY POINTS - ALL MAGNETOS

A. Place the magneto on the T-125 base, flange down.

6300 Series Magnetos - Remove T-509 timing base adapter.

Retard Breaker Magnetos - Install the T-123 timing plug on the rotor shaft before placing the magneto on the T-125 rotor base.

Impulse Coupled Magnetos - Do not use T-123 timing plug.

Direct-Drive Magnetos - Install the T-123 timing plug on the rotor shaft before placing the magneto on the T-125 base.

B. Looking directly down on the magneto, align the magneto so that the coil is oriented in the 12 o’clock position.

C. Insert T-150 "E" Gap Gauge (Figure 7.10.1) between the pole laminations in the rotor shaft and the pole laminations in the frame.
Insert flat end of T-150 when using old style rotor (no slots on the magnet head). See Figure 7.10.2. Reference the magneto data plate for magneto rotation. Insert the "E" Gap Gauge against the right lamination for right-hand rotation magneto and against the left laminations for left-hand rotation magneto.

E. Using a timing light, adjust the contact points to be just opening when the frame is against the T-150 gauge. This will provide a point gap opening of .008-.010 inches.

F. Impulse Coupled and Direct Drive Magnetos: Secure the points in this position by tightening the screws. Torque adjusting screw to 18-20 in-lbs. Torque the pivot screw to 15-18 in-lbs.

Retard Breaker Magnetos: Secure primary points by tightening the adjusting screw. Torque to 15-18 in-lbs. Proceed to 7.10.2.

Tachometer Drive Magnetos: Secure primary points by tightening the adjusting screw. Torque to 15-18 in-lbs. Proceed to 7.10.3.

G. Apply cam grease sparingly to each lobe of the cam. (See Figure 7.10.4.)

H. Attach coil lead wire to the vertical bronze male terminal of the primary point assembly.

Insert notched end of T-150 when using new style rotors (with slots on magnet head). See Figure 7.10.3. Locate the appropriate "L" or "R" timing slot on the rotor magnet head and insert the notched end of the "E" gap gauge. Use the "L" slot for left-hand rotation magneto and the "R" slot for right-hand rotation magneto.

D. Rotate the magneto frame on the T-100 base until the T-150 "E" gap gauge rests against the pole lamination in the magneto frame. Rotate the magneto frame clockwise for left-hand rotation magneto and counterclockwise for right-hand rotation magneto. The magneto rotor shaft is now in "E" gap position.

7.10.2 SET SECONDARY POINTS - RETARD BREAKER MAGNETOS ONLY

NOTE: FOR RETARD BREAKER MAGNETOS, THE PRIMARY POINTS MUST BE SET FIRST. THE RETARD (SECONDARY) POINTS ARE SET IN REFERENCE TO THE PRIMARY POINTS, AND THE PRIMARY POINTS MUST BE SET CORRECTLY TO ENSURE ACCURACY OF RETARD CONTACT SETTINGS.

A. Set primary points according to instructions in Section 7.10.1 above. Do not remove T-150 "E" gap gauge, and do not remove magneto frame from T-125 base.

NOTE: RETARD POINTS ARE SET IN REFERENCE TO PRIMARY POINT SETTINGS. THE LAG ANGLE ON THE MAGNETO DATAPlate IS THE RETARD BREAKER’S RETARD ANGLE MEASURED IN DEGREES. THE FOLLOWING PROCEDURE WILL SET THE RETARD POINTS THE REQUIRED NUMBER OF DEGREES FROM THE PRIMARY POINTS.
B. Holding magneto securely in base (in "E", gap position), tip magneto and T-125 base and loosen timing disk retaining screws. Timing disk should rotate freely.

C. Ensure that the T-150 "E" gap gauge is still positioned against the correct lamination. Rotate magneto frame until it contacts the pin in the T-125 base. Rotate the magneto frame clockwise for left-hand rotation magnetos, counterclockwise for right-hand rotation magnetos.

D. Hold magneto securely in base and tip magneto and T-125 base. Tighten one timing disk retaining screw to hold the timing disk in place. Remove magneto from T-125 base.

E. Turn T-125 base over so that timing disk is facing you. Loosen timing disk retaining screw. Scribe a mark on the timing disk corresponding to the index mark on the T-125 base. This represents a point of-reference for primary point "E" gap. (See Figure 7.10.5.)

F. Note the lag angle from the magneto dataplate.

G. The ticks on the timing disk each represent 5 degrees. To set the timing disk in the proper position, rotate the timing disk counterclockwise for left-hand rotation magnetos and clockwise for right-hand rotation magnetos. Rotate the disk according to the following chart:

<table>
<thead>
<tr>
<th>Magneto Retard Angle</th>
<th>Number of Ticks on Timing Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td>1</td>
</tr>
<tr>
<td>10°</td>
<td>2</td>
</tr>
<tr>
<td>15°</td>
<td>3</td>
</tr>
<tr>
<td>20°</td>
<td>4</td>
</tr>
<tr>
<td>25°</td>
<td>5</td>
</tr>
<tr>
<td>30°</td>
<td>6</td>
</tr>
<tr>
<td>35°</td>
<td>7</td>
</tr>
<tr>
<td>40°</td>
<td>8</td>
</tr>
</tbody>
</table>

EXAMPLE:
Lag angle as noted from dataplate: 25°
Rotation as noted from dataplate: L
To set timing disk, turn the timing disk 5 ticks (5 x 5° = 25) counterclockwise using scribed mark as reference point.

H. Tighten timing disk retaining screws. Reverse T-125 base and place magneto in it, flange down (use T-123 timing plug). Remove T-150 "E" gap gauge from magneto.

1. Rotate magneto against the direction of normal rotation (clockwise for left-hand rotation magnetos and counterclockwise for right-hand rotation magnetos) until the magneto bumps against the pin in the T-125 base. The magneto rotor shaft is now retarded from E-gap position the number of degrees indicated on the magneto data plate.

J. Using a timing light, adjust the retard contact points to where they are just opening. Tighten the adjusting screws to secure the retard points in this position. Torque adjusting screws to 18 - 20 in-lbs.

K. Apply cam grease sparingly to each lobe of the cam. (See Figure 7.10.6.)

L. Attach coil lead wire to the male terminal of the primary point assembly.

7.10.3 SET TACHOMETER DRIVE POINTS - TACHOMETER DRIVE MAGNETOS ONLY

A. Set primary points according to instructions in Section 7.10.1 above.

B. Adjust tachometer drive points to have an opening of .013 (± .002) with the rotor oriented to the position of maximum cam lift.

C. Tighten the adjusting screws to secure the points in this position. Torque adjusting screws to 18-20 in-lbs.

D. Apply cam grease sparingly to each lobe of the cam. (See Figure 7.10.6.)
7.11 INSTALL CONDENSER

A. Assemble the condenser into the distributor housing, being sure to rotate the condenser wire the same rotation as the condenser is tightened in the housing. (See Figure 7.11.)

![Figure 7.11](insert image)

Retard Breaker Magnetos Only - Ensure retard breaker contact lead is channeled underneath condenser. See Figure 7.11.1.

![Figure 7.11.1](insert image)

CAUTION: RETARD BREAKER LEAD WIRE MUST BE CHANNELED SECURELY UNDER CONDENSER. FAILURE TO DO SO MAY CAUSE THE LEAD WIRE TO INTERFERE WITH ROTOR GEAR MOVEMENT OR POINT OPERATION.

7.12 DISTRIBUTOR GEAR ASSEMBLY

A. Install carbon brush into spring.
 1. Insert small end of carbon brush into tapered end of spring.
 2. Turn carbon brush clockwise until the shoulder of carbon brush seats on the spring.

B. Install carbon brush assembly into the distributor gear.
 1. Insert the open end of the spring into the open end of the distributor gear shaft.
 2. Gently press the carbon brush and spring assembly into the shaft until the spring seats on the bottom of the shaft. The top of the carbon brush should protrude from the top of the shaft approximately 1/4 inch. (See Figure 7.12.)

![Figure 7.12](insert image)

7.13 ASSEMBLE DISTRIBUTOR BLOCK

A. Refer to Step 3.3.8 for lubrication.

B. Assemble the distributor gear in the distributor block with the L&R facing you.

C. Assemble the bearing bar to the distributor block with the brush shield facing the notch in the distributor block as shown in Figure 7.13.

![Figure 7.13](insert image)

7.14 ALIGN ROTOR GEAR

A. Install rotor gear onto end of rotor shaft.

B. Align the "L" or "R" (depending on the rotation of the magneto - look at data plate) on the rotor gear so that it points up, toward the high tension lead of the coil. Secure rotor shaft to prevent rotation during assembly. Alignment of rotor gear is critical. See Figure 7.14.)

![Figure 7.14](insert image)
7.15 **ALIGN DISTRIBUTOR GEAR**

A. Align the "L" or "R" hole in the distributor gear with the "L" or "R" in the distributor block. Use "L" for lefthand rotation and "R" for right-hand rotation magnetos.

B. Lock the distributor gear in place with the T-118 timing pin through the appropriate hole in the block and gear.

C. Place distributor block spacers on magneto frame. (See Figure 7.15.)

D. Place the distributor block on magneto frame. The distributor gear and rotor gear are properly meshed when the index mark on the rotor gear aligns with the reference mark on the distributor block. (See Figure 7.15.A.)

7.16 **CONNECT CONDENSER WIRE**

A. Connect condenser wire to the primary terminal of the contact assembly.

B. Attach the terminal with the lead pointing left. (See Figure 7.16.)

D. Connect condenser wire to the primary terminal of the contact assembly.

7.17 **CONNECT RETARD CONTACT WIRE**

A. Connect retard terminal wire to retard contact points. (See Figure 7.17.)
7.18 CONNECT TACHOMETER CONTACT WIRE

A. Connect wires to tachometer contact points. (See Figure 7.18)

Figure 7.17

Figure 7.18

7.19 ATTACH THE DISTRIBUTOR HOUSING - NON PRESSURIZED MAGNETOS

A. Place the distributor housing onto the magneto frame.

7.20 ATTACH THE DISTRIBUTOR HOUSING - PRESSURIZED MAGNETOS

A. Install housing gasket.

B. Place the distributor housing onto the magneto frame.

CAUTION: MAKE SURE THE CARBON BRUSH IS CONTAINED IN THE DISTRIBUTOR SHAFT DURING ASSEMBLY. IF THE CARBON BRUSH CATCHES ON THE SIDE OF THE DISTRIBUTOR SHAFT, THE COIL STRAP WILL BE BENT INTO THE WRONG POSITION DURING ASSEMBLY.

7.21 SECURE DISTRIBUTOR HOUSING

A. Secure the housing with three long screws and one short screw. Torque to 18 - 28 in-lbs.

B. Remove T-118 timing pin.

CAUTION: DO NOT ROTATE MAGNETO ROTOR SHAFT WITH THE T-118 TIMING PIN INSERTED IN THE DISTRIBUTOR BLOCK. IF ROTOR SHAFT IS ROTATED WITH TIMING PIN INSERTED, THE MAGNETO MUST BE DISASSEMBLED AND INSPECTED FOR DISTRIBUTOR BLOCK AND GEAR DAMAGE.
8.0 POST-ASSEMBLY TESTING

Complete Magneto Reassembly, Section 7.0. Ensure that the T-118 Timing Pin has been removed.

8.1 PRE-TEST PREPARATION

A. Mount the magneto on a suitable test stand in the same position as installed on the engine.

B. Install a Slick High-Temperature Ignition Harness on the magneto and connect each output lead to a 5mm spark gap.

CAUTION: DO NOT OPERATE THE MAGNETO UNLESS THE IGNITION HARNESS IS INSTALLED AND THE OUTPUT LEADS ARE CONNECTED TO THE 5mm GAP.

8.2 IMPULSE COUPLING

A. Rotate the test stand drive pulley in the same direction of rotation as stated on the magneto data plate.

B. The impulse coupling should engage the stop pin in the magneto frame below approximately 150 RPM. If the impulse coupling pawls slip past the stop pin or engage intermittently, the impulse coupling is not operating properly. Impulse coupling should not engage at speeds above 475 RPM.

8.3 COMING-IN SPEED

A. Determine the lowest speed at which the magneto can be turned and still spark all 5mm gaps without missing.

B. The test gap must fire consistently at 255 RPM maximum on non-impulse magnetos. On impulse coupled magnetos, the test gap must fire consistently up to 150 RPM maximum while impulse coupling is engaging and 475 RPM maximum without impulse coupling engaging.

8.4 HIGH-SPEED TEST

A. 4300/6300 Series Magnetos

1. Operate the magneto at 1000, 2000 and 3000 RPM for five minute at each speed setting.

2. Observe sparking regularity at the spark gaps. Magneto must produce a consistent spark at all speed settings.

8.5 LONG TERM TEST (OPTIONAL)

A. 4300 Series Magnetos

1. Test run the magneto for a minimum of three hours. Operate the magneto at 1725 RPM for the first two hours and 3400 RPM for the remaining hour.

2. Regular and consistent firing of the spark gaps is required during the entire test.

B. 6300 Series magnetos

1. Test run the magneto for a minimum of three hours. Operate the magneto at 3000 RPM for the first two hours and 4500 RPM for the remaining hour.

2. Regular and consistent firing of the spark gaps is required during the entire test.

8.6 TEMPERATURE TEST

Measure the temperature on the outside surface of the magneto frame during the long-term test at the highest RPM setting. The magneto will generate heat during normal operation. Maximum temperature on the outside surface of the magneto frame is 175°F when tested at room temperature.

8.7 PRESSURE TESTING - PRESSURIZED MAGNETOS ONLY

After magneto assembly, install a pressurized harness cap and apply 15 psi filtered air to the inlet nozzle of the magneto. Air flow at 15 psi is 11-40 standard cubic feet per hour (SCFH). If flow is excessive, reposition gaskets and retorque housing and harness cap screws. Screws should be torqued to 21-25 in. lbs. (See Figure 8.8 for Test Apparatus Details.) Testing should be conducted with magneto at room temperature.
8.8Preflight Operational Check

Before flight or after magneto maintenance, observe engine operation while running on both left or right magnetos individually. Both magnetos should operate normally and engine should operate within parameters outlined in the engine manufacturer’s operating manual.

WARNING: DO NOT FLY AIRCRAFT IF BOTH MAGNETOS ARE NOT FUNCTIONING PROPERLY.
9.0 POSTFLIGHT OPERATIONAL CHECK

After flight, observe engine operation while running on both left or right magnetos individually. Both magnetos should operate normally and engine should operate within parameters outlined in the engine manufacturer’s operating manual.

WARNING: DO NOT ATTEMPT FURTHER FLIGHT IF BOTH MAGNETOS ARE NOT FUNCTIONING NORMALLY.

9.1 MAINTENANCE CHECKLIST

<table>
<thead>
<tr>
<th>A/C Type</th>
<th>Engine Make/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>N#</td>
<td>Total Time on Engine</td>
</tr>
<tr>
<td>Magneto P/N</td>
<td>Total Time on Magneto</td>
</tr>
<tr>
<td>Magneto S/N</td>
<td>Date</td>
</tr>
</tbody>
</table>

EVERY 100 HOURS

☐ ADJUST TIMING TO ENGINE Sec. 3.2.1

☐ INSPECTIONS

☐ Wiring Conditions and Connections Sec. 3.2.2
☐ Vent Holes-Non-Pressurized Magnetos Sec. 3.2.3
☐ P-Lead Attachment Sec. 3.2.4
☐ Turbo Filter (Pressurized Mags Only) Sec. 3.2.7
☐ Inlet Nozzle (Pressurized Magnetos Only) Sec. 3.2.8
☐ Orifice Vent (Pressurized Magnetos Only) Sec. 3.2.9

EVERY 500 HOURS

☐ GENERAL CLEANING Sec. 3.3.1

☐ INSPECTIONS-ALL MAGNETOS

☐ Ball Bearing Assembly Sec. 3.3.2
☐ Rotor Sec. 3.3.3
☐ Impulse Coupling Sec. 3.3.4
☐ Coil Sec. 3.3.5
☐ Condenser Sec. 3.3.7
☐ Contact Points Sec. 3.3.6
☐ Carbon Brush Assembly Sec. 3.3.9
☐ Distributor Block Assembly Sec. 3.3.8

☐ INSPECTIONS-PRESSURIZED MAGNETOS Sec. 3.4

☐ Inlet Nozzle Sec. 3.4.1
☐ Orifice Vent Sec. 3.4.2
☐ Turbo Filter Sec. 3.4.3
☐ Frame Gasket Sec. 3.4.4
☐ Screw Gaskets Sec. 3.4.4
☐ Harness Cap O-Ring Sec. 3.4.5
☐ Magneto Interior-Check for Turbocharger Contaminants Sec. 3.3.3 - 3.3.10
☐ Pressure Testing (as required) Sec. 8.8

☐ LUBRICATION Sec. 3.3.8
THIS PAGE LEFT BLANK INTENTIONALLY.
10. TROUBLESHOOTING GUIDE

The following charts are intended to be used as a guide only. Many non-ignition factors influence the performance of aircraft ignition systems and the replacement or repair of ignition components may not remedy problems in all cases. After verifying that all non-ignition related causes for possible problems have been explored, then proceed to use this troubleshooting guide.

10.1 TROUBLESHOOTING GUIDE

I. OPERATIONAL PROBLEMS

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARD STARTING</td>
<td>Incorrect external timing to engine.</td>
<td>Consult engine manufacturer's specification for ignition timing. Correct as required</td>
</tr>
<tr>
<td></td>
<td>Incorrect internal timing.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.10 for internal timing specifications. Correct as required</td>
</tr>
<tr>
<td></td>
<td>Point gap setting incorrect.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.10 for point gap specifications. Correct as required</td>
</tr>
<tr>
<td></td>
<td>Faulty impulse coupling.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.4, for impulse coupling specifications and inspection procedures.</td>
</tr>
<tr>
<td></td>
<td>Overtorqued impulse coupling nut.</td>
<td>Torque nut to 120-180 in-lbs on magnetos with attached drive gears. There must be .010 to .020" play between drive gear and impulse coupling. Correct as necessary.</td>
</tr>
<tr>
<td></td>
<td>Worn pawls or stop pin.</td>
<td>Inspect pawls and stop pin for wear. Correct as necessary.</td>
</tr>
<tr>
<td></td>
<td>Impulse coupling fails to return to unwound position.</td>
<td>Inspect impulse coupling nut for torque.</td>
</tr>
<tr>
<td></td>
<td>Fouled spark plugs.</td>
<td>Clean spark plugs according to manufacturer's specification.</td>
</tr>
<tr>
<td></td>
<td>Incorrect spark plug gap.</td>
<td>Re-gap spark plug to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty ignition switch.</td>
<td>Inspect ignition switch for possibility of intermittent grounding and proper operation. Repair or replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Corrosion on harness lead contacts.</td>
<td>Consult manual L-1499 for proper cleaning and inspection procedures. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Broken rotor shaft at cam slot.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>HARD STARTING (cont.)</td>
<td>Magneto Internal Component Failure:</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3, for specifications and inspection procedures.</td>
</tr>
<tr>
<td></td>
<td>Points</td>
<td>Inspect for excessive burning, pitting, corrosion gap setting and general operation. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Cam</td>
<td>Inspect cam for excessive wear or unevenness that could cause "point spread". Correct as necessary.</td>
</tr>
<tr>
<td></td>
<td>Condenser</td>
<td>Inspect for faulty P-lead connection, P-lead stud for over-torqued condition, damaged pigtail connector and damaged grounding. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Coil</td>
<td>Inspect for cracks, damage to high tension strap or pigtail connector and integrity of windings. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Distributor gear</td>
<td>Inspect electrode finger for looseness, gear teeth, shaft. Inspect carbon brush for damage. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Distributor Block</td>
<td>Inspect distributor towers for evidence of abrasion or excessive burning. Examine rotor gear bushings for wear. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Incorrect or nonstandard starting procedures</td>
<td>Consult engine manufacturer's operation manual for proper operation and performance. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Faulty fuel delivery system.</td>
<td>Consult engine manufacturer's manual for specifications and operation. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Inoperative retard contact point circuit.</td>
<td>Inspect wiring connections and operation of points. Correct as required.</td>
</tr>
<tr>
<td>PROPELLER KICKBACK DURING STARTING</td>
<td>Impulse coupling not staying engaged while starter engaged</td>
<td>Inspect impulse coupling for operation. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Inoperative retard contact point circuit.</td>
<td>Inspect for faulty wiring, timing, or inoperative contact points. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Non-impulse magneto not grounded while starter engaged.</td>
<td>Inspect and correct as required.</td>
</tr>
<tr>
<td></td>
<td>Broken rotor shaft at cam slot.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td>ROUGH RUNNING</td>
<td>Incorrect external timing to engine</td>
<td>Consult engine manufacturer's manual for specifications of ignition timing. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Incorrect internal timing</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.10, for internal timing specifications. Correct as required.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>ROUGH RUNNING (cont.)</td>
<td>Fouled spark plugs.</td>
<td>Clean spark plugs according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Incorrect spark plug gap</td>
<td>Regap spark plug to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty spark plug.</td>
<td>Test spark plug according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty ignition switch</td>
<td>Inspect ignition switch for possibility of intermittent grounding and proper operation. Repair as necessary.</td>
</tr>
<tr>
<td>Magneto Internal Component</td>
<td>Failure:</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3, for specifications and inspection procedures.</td>
</tr>
<tr>
<td>Points</td>
<td></td>
<td>Inspect for excessive burning, pitting, corrosion, gap setting and general operation. Replace as necessary.</td>
</tr>
<tr>
<td>Cam</td>
<td></td>
<td>Inspect cam for excessive wear or unevenness that could cause "cam spread". Correct as necessary.</td>
</tr>
<tr>
<td>Condenser</td>
<td></td>
<td>Inspect for faulty P-Lead connection, P-lead stud for overtorqued condition, damaged pigtail connector and damaged grounding. Replace as necessary.</td>
</tr>
<tr>
<td>Coil</td>
<td></td>
<td>Inspect for cracks, damage to high tension strap or pigtail connector and integrity of windings. Replace as necessary.</td>
</tr>
<tr>
<td>Distributor Gear</td>
<td></td>
<td>Inspect electrode finger for looseness, gear teeth, shaft. Inspect carbon brush for damage. Replace as necessary.</td>
</tr>
<tr>
<td>Distributor Block</td>
<td></td>
<td>Inspect distributor towers for evidence of abrasion or excessive burning. Examine rotor gear bushings for wear. Replace as necessary.</td>
</tr>
<tr>
<td>Rotor shaft at cam slot</td>
<td></td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td>Excessive heat.</td>
<td></td>
<td>Inspect baffling or cooling air duct. Correct as necessary.</td>
</tr>
<tr>
<td>Faulty fuel delivery system.</td>
<td></td>
<td>Consult engine manufacturer's operations manual for proper operation and performance. Correct as required.</td>
</tr>
<tr>
<td>Faulty induction system</td>
<td></td>
<td>Inspect for leaks and faulty valve operation. Consult engine manufacturer's specifications for proper operation and performance.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>ROUGH RUNNING (cont.)</td>
<td>Faulty exhaust system.</td>
<td>Inspect for obstructions in exhaust pipes and mufflers, faulty valve operation. Consult engine manufacturer's specifications for proper operation and performance.</td>
</tr>
<tr>
<td>ROUGH RUNNING OR VIBRATION IN SPECIFIC RPM RANGE</td>
<td>Propeller out of track or unbalanced.</td>
<td>Consult propeller manufacturer's manual for specifications. Correct as necessary.</td>
</tr>
<tr>
<td></td>
<td>Propeller imbalanced or installed incorrectly.</td>
<td>Correct as necessary</td>
</tr>
<tr>
<td></td>
<td>Magneto Internal Component Failure: Points</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3 for specifications and inspections procedures.</td>
</tr>
<tr>
<td></td>
<td>Cam</td>
<td>Inspect cam for excessive wear or unevenness that could cause "cam spread". Correct as necessary.</td>
</tr>
<tr>
<td></td>
<td>Condenser</td>
<td>Inspect for faulty P-lead connection, P-lead stud for overtorqued condition, damaged pigtail connector and damaged grounding. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Coil</td>
<td>Inspect for cracks, damage to high tension strap or pigtail connector and integrity of windings. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Distributor Gear</td>
<td>Inspect electrode finger for looseness, gear teeth, shaft. Inspect carbon brush for damage. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Distributor Block</td>
<td>Inspect distributor towers for evidence of abrasion or excessive burning. Examine rotor gear bushings for wear. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Rotor shaft at cam slot</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td></td>
<td>Faulty fuel delivery system.</td>
<td>Consult engine manufacturer's manual for specifications and operation. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Faulty induction system</td>
<td>Inspect for leaks and faulty valve operation. Consult engine manufacturer's specifications for proper operation and performance. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Faulty exhaust system.</td>
<td>Inspect for obstructions in exhaust pipes and mufflers, faulty valve operation. Consult engine manufacturer's specification for proper operation and performance.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>EXCESSIVE RPM DROP</td>
<td>Incorrect external timing to engine.</td>
<td>Consult engine manufacturer's manual for specifications of ignition timing. Correct as necessary.</td>
</tr>
<tr>
<td>DURING MAGNETO CHECK</td>
<td>Incorrect internal timing.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.10, for internal timing specifications. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Broken rotor shaft at cam slot.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td></td>
<td>Fouled spark plugs.</td>
<td>Clean spark plugs according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Incorrect spark plug gap.</td>
<td>Re-gap spark plug to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty spark plug.</td>
<td>Test spark plug according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty tachometer.</td>
<td>Confirm tachometer accuracy at RPM where magneto drop noted. Correct as necessary</td>
</tr>
<tr>
<td></td>
<td>Faulty ignition lead.</td>
<td>Consult Champion Aerospace Harness Maintenance Manual L-1499 for ignition lead troubleshooting information. Correct as required</td>
</tr>
<tr>
<td></td>
<td>Corrosion on harness lead contacts.</td>
<td>Consult Champion Aerospace Harness Maintenance Manual L-1499 for proper cleaning and inspection procedures. Correct as required</td>
</tr>
<tr>
<td>MAGNETO WILL NOT FIRE</td>
<td>Faulty ignition switch.</td>
<td>Inspect ignition switch for possibility of intermittent grounding and proper operation. Repair or replace as necessary</td>
</tr>
<tr>
<td></td>
<td>Faulty condenser.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.7. Inspect for faulty P-lead connection, broken P-lead stud, damaged pigtail connector, and damaged grounding. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Point gap setting incorrect.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.10, for point cap specifications. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Retard contact point circuit inoperative.</td>
<td>Inspect and correct as required.</td>
</tr>
<tr>
<td></td>
<td>Broken rotor shaft at cam slot.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td>MAGNETO “HOT”</td>
<td>Faulty ignition switch.</td>
<td>Inspect ignition switch for possibility of intermittent grounding and proper operation. Repair or replace as necessary</td>
</tr>
<tr>
<td></td>
<td>Broken “P” lead wire.</td>
<td>Repair as necessary.</td>
</tr>
</tbody>
</table>
II. PHYSICAL DAMAGE

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER LOSS</td>
<td>Incorrect external timing to engine.</td>
<td>Consult engine manufacturer's manual for specifications of ignition timing. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Faulty Tachometer</td>
<td>Consult engine manufacturer's manual for specifications of ignition timing. Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Broken rotor shaft at cam slot.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.3.C.</td>
</tr>
<tr>
<td>MOUNTING FLANGE BROKEN</td>
<td>Hold down clamp over torqued.</td>
<td>Torque hold-down clamps to 190-220 in-lbs.</td>
</tr>
<tr>
<td></td>
<td>Hold down clamps torqued unevenly.</td>
<td>When magneto is reinstalled, be sure clamps are tightened with even pressure.</td>
</tr>
<tr>
<td></td>
<td>Magneto gasket residue on accessory case mounting pad.</td>
<td>Be sure mounting face is free of gasket residue.</td>
</tr>
<tr>
<td>POINTS BURNED EXCESSIVELY</td>
<td>Faulty condenser.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.7, for testing procedure. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Improper spark plug gap.</td>
<td>Re-gap plugs according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Fouled spark plug.</td>
<td>Clean spark plug according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Excessive heat.</td>
<td>Inspect baffling or cooling air duct. Correct as necessary.</td>
</tr>
<tr>
<td>HIGH TENSION LEAD ON COIL</td>
<td>Improper tension between high tension lead and carbon brush.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.7, for high tension lead loading specifications.</td>
</tr>
<tr>
<td>WORN OR BURNED THROUGH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COIL CRACKED OR ARCING IN CASE</td>
<td>Faulty coil.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.5, for specifications and inspection procedures. Replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Improper spark plug gap.</td>
<td>Re-gap spark plug to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Fouled spark plug.</td>
<td>Clean spark plug according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty spark plug</td>
<td>Inspect spark plug according to manufacturer's specifications.</td>
</tr>
<tr>
<td></td>
<td>Excessive heat</td>
<td>Inspect baffling or cooling air duct. Correct as necessary.</td>
</tr>
<tr>
<td>ELECTRODE FINGER LOOSE ON DISTRIBUTOR GEAR</td>
<td>Timing pin wedged between electrode and distributor block during timing process.</td>
<td>Consult Champion Aerospace Manual L-1363 for proper timing procedures. Replace block and gear assembly.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSE</td>
<td>REMEDY</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>DISTRIBUTOR BLOCK TOWERS SCORED OR EXCESSIVELY BURNED DISTRIBUTOR GEAR</td>
<td>Electrode finger contacting towers.</td>
<td>Inspect and replace as necessary.</td>
</tr>
<tr>
<td>BUSHINGS EXCESSIVELY WORN</td>
<td>Improper lubrication of bushing.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.8, for proper maintenance procedures.</td>
</tr>
<tr>
<td>BEARING BAR BURNED</td>
<td>Carbon tracking due to excessive carbon brush wear.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 7.7, for high tension lead loading specifications.</td>
</tr>
<tr>
<td>SPUN BEARING</td>
<td>Bearing not updated to correct configuration.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.2 and 7.1, for proper maintenance procedure.</td>
</tr>
<tr>
<td></td>
<td>Improper bearing installation.</td>
<td>Consult Champion Aerospace Manual L-1363, Section 3.3.2 and 7.1, for proper maintenance procedure.</td>
</tr>
<tr>
<td>PRESSURIZED MAGNETOS ONLY: INTERNAL CONTAMINATION AND CORROSION</td>
<td>Faulty pressurization or filtration system.</td>
<td>Consult engine manufacturer’s manual for pressurization system specifications.</td>
</tr>
<tr>
<td>ALL MAGNETOS: INTERNAL CONTAMINATION AND CORROSION</td>
<td>Excessive or improper solvents or cleaning agents</td>
<td>Consult Champion Aerospace Manual L-1363 for proper cleaning procedures. Correct as necessary.</td>
</tr>
</tbody>
</table>
THIS PAGE LEFT BLANK INTENTIONALLY.
TABLE ONE
4300 SERIES OVERHAUL PARTS
REPLACEMENT LIST

The following parts must be replaced at overhaul. Additional parts may require replacement depending on conditions as determined during magneto inspection. Install only Champion Aerospace Replacement Parts.

Use only genuine Champion Aerospace manufactured parts obtained from Champion Aerospace approved sources. Genuine Champion Aerospace parts are produced and inspected under rigorous procedures to insure airworthiness and suitability in Slick magnetos. Parts purchased from sources other than Champion Aerospace, even though outwardly identical in appearance may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in a Slick magneto. Salvaged magneto parts, reworked parts obtained from non-Champion Aerospace approved sources, or parts the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures, or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render service work with this part, even though originally manufactured by Champion Aerospace, unsuitable or unsafe for use in a Slick magneto. Champion Aerospace expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-Champion Aerospace approved parts.

Slick magnetos are engineered to that mechanical parts wear at a balanced rate. Consistent and complimentary wear patterns establish the recommended maintenance intervals defined in Champion Aerospace service literature, therefore used, service worn parts should never be used to troubleshoot or repair a magneto, nor should original parts be replaced by used service worn parts on magnetos being returned to service. Further, non-Champion Aerospace manufactured parts may wear at uneven and different rates than original Champion Aerospace manufactured parts, making Champion Aerospace service literature an inappropriate guide to proper maintenance. Parts not manufactured by Champion Aerospace, even if FAA/PMA Approved, may not fit or operate like original Champion Aerospace manufactured parts. FAA testing of PMA parts does not require operation on an engine or flight tests and does not require the test duration to exceed the maintenance intervals called out in Champion Aerospace literature. For these reasons, used service worn parts or parts not manufactured by Champion Aerospace may adversely affect magneto reliability in ways not anticipated by Champion Aerospace and its service literature.

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condenser</td>
<td>1</td>
</tr>
<tr>
<td>Double Sealed Bearing</td>
<td>1</td>
</tr>
<tr>
<td>Bearing Cap Assembly</td>
<td>1</td>
</tr>
<tr>
<td>Coil</td>
<td>1</td>
</tr>
<tr>
<td>Impulse Coupling</td>
<td>1</td>
</tr>
<tr>
<td>Oil Seal</td>
<td>1</td>
</tr>
<tr>
<td>Contact Point Kit</td>
<td>1</td>
</tr>
<tr>
<td>Rotor Gear</td>
<td>1</td>
</tr>
<tr>
<td>Distributor Block and Gear</td>
<td>1</td>
</tr>
</tbody>
</table>

Reference Table Two “Parts Listing” for correct part number for a specified model magneto.
TABLE TWO
4300 SERVICE PARTS LIST
(Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Ref No.</th>
<th>Description</th>
<th>4301</th>
<th>4302</th>
<th>4303</th>
<th>4309</th>
<th>4310</th>
<th>4316</th>
<th>4330</th>
<th>4331</th>
<th>4333</th>
<th>4342</th>
<th>4344</th>
<th>4345</th>
<th>Qty. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cotter Pin</td>
<td>M2556</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Nut</td>
<td>M3019</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Washer</td>
<td>M3172</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Impulse Coupling Assy.</td>
<td>M3007</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Impulse Coupling Sprg.</td>
<td>M917</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Oil Seal</td>
<td>M3062</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Air Vent</td>
<td>M1077</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Frame</td>
<td>M3859</td>
<td>M3900</td>
<td>M3859</td>
<td>M3900</td>
<td>M3859</td>
<td>M3888</td>
<td>M3888</td>
<td>M3900</td>
<td>M5002</td>
<td>M3900</td>
<td>M3900</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Rotor</td>
<td>M3073</td>
<td>M3513</td>
<td>M3338</td>
<td>M3073</td>
<td>M3073</td>
<td>M3047</td>
<td>M3065</td>
<td>M3065</td>
<td>M5000</td>
<td>M3548</td>
<td>M3513</td>
<td>M3548</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bearing Kit</td>
<td>K3318-4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Ball Bearing</td>
<td>M3006</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Bearing Cap Assy.</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3630</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3630</td>
<td>K3630</td>
<td>K3630</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bearing Cap Clamp</td>
<td>M3018</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Screw</td>
<td>M3221</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Contact Point Primary</td>
<td>M3081</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Contact Point Secondary</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M3637</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M3740</td>
<td>M3637</td>
</tr>
<tr>
<td>17</td>
<td>Rotor Gear</td>
<td>M3827</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Woodruff Key</td>
<td>M2536</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Coil Wedge</td>
<td>M3040</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>Screw</td>
<td>M3020</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Coil</td>
<td>K3975</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Screw</td>
<td>M3021</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Air Vent with Hood</td>
<td>M3084</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Screw</td>
<td>M3015</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>Housing, Distributor</td>
<td>M3902</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Capacitor</td>
<td>K3984</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Dist. Block & Gear Assy.</td>
<td>K3822</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Carbon Brush</td>
<td>K3215</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Screw</td>
<td>M3021</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Spacer</td>
<td>M3826</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

NOTE: Harness Cap Screws M1553, quantity 3, are used to attach wiring harness to all magneto models.
TABLE TWO
4300 SERVICE PARTS LIST
(Sheet 2 of 2)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
<th>4347</th>
<th>4348</th>
<th>4353</th>
<th>4354</th>
<th>4370</th>
<th>4371</th>
<th>4372</th>
<th>4373</th>
<th>4374</th>
<th>4381</th>
<th>4382</th>
<th>Qty. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cotter Pin</td>
<td>M2556</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Nut</td>
<td>M3019</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Washer</td>
<td>M3172</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Impulse Coupling Assy.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M3529</td>
<td>-</td>
<td>-</td>
<td>M3163</td>
<td>M3100</td>
<td>M3529</td>
<td>M3689</td>
<td>M3007</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Impulse Coupling Spring</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M917</td>
<td>-</td>
<td>M917</td>
<td>M917</td>
<td>M917</td>
<td>M917</td>
<td>M917</td>
<td>M917</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Oil Seal</td>
<td>M3062</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Air Vent</td>
<td>M1077</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Frame</td>
<td>M3900</td>
<td>M3900</td>
<td>M3900</td>
<td>M3859</td>
<td>M3900</td>
<td>M3859</td>
<td>M3859</td>
<td>M3859</td>
<td>M3859</td>
<td>M3888</td>
<td>M3859</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Rotor</td>
<td>M3548</td>
<td>M3512</td>
<td>M3548</td>
<td>M3158</td>
<td>M3548</td>
<td>M3158</td>
<td>M3158</td>
<td>M3158</td>
<td>M3065</td>
<td>M3158</td>
<td>M3065</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Bearing Kit</td>
<td>K3301</td>
<td>K3301</td>
<td>K3301</td>
<td>K3318-4</td>
<td>K3301</td>
<td>K3318-4</td>
<td>K3301</td>
<td>K3318-4</td>
<td>K3318-4</td>
<td>K3318-4</td>
<td>K3318-4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Ball Bearing</td>
<td>M3006</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Bearing Cap Assy.</td>
<td>K3630</td>
<td>K3630</td>
<td>K3630</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>K3485</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bearing Cap Clamp</td>
<td>M3018</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Screw</td>
<td>M3221</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Contact Point Primary</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Contact Point Secondary</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>M3081</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Rotor Gear</td>
<td>M3827</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Woodruff Key</td>
<td>M2536</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Coil Wedge</td>
<td>M3040</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>Screw</td>
<td>M3020</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Coil</td>
<td>K3975</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Screw</td>
<td>M3021</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Air Vent with Hood</td>
<td>M3084</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Screw</td>
<td>M3015</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>Housing, Distributor</td>
<td>M3832</td>
<td>M3832</td>
<td>M3832</td>
<td>M3832</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Capacitor</td>
<td>K3984</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Dist. Block & Gear Assy.</td>
<td>K3822</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Carbon Brush</td>
<td>K3215</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Screw</td>
<td>M3021</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>Spacer</td>
<td>M3826</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTE: Harness Cap Screws M1553, quantity 3, are used to attach wiring harness to all magneto models.
TABLE THREE
EXPLODED PARTS DIAGRAM
4300 SERIES MAGNETO

<table>
<thead>
<tr>
<th>ISSUED</th>
<th>REVISED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO</td>
<td>DAY</td>
</tr>
<tr>
<td>05</td>
<td>01</td>
</tr>
</tbody>
</table>

Champion Aerospace LLC
1230 Old Norris Road
Liberty, South Carolina, U.S.A. 29657
©2011 Champion Aerospace LLC

PAGE NO. | REVISION
T-4 | F

CHAMPION AEROSPACE LLC PROPRIETARY INFORMATION - Subject to the restrictions on the Title page
TABLE FOUR
6300 SERIES OVERHAUL PARTS REPLACEMENT LIST

The following parts must be replaced at overhaul. Additional parts may require replacement depending on conditions as determined during magneto inspection. Install only Champion Aerospace Replacement Parts.

Use only genuine Champion Aerospace manufactured parts obtained from Champion Aerospace approved sources. Genuine Champion Aerospace parts are produced and inspected under rigorous procedures to insure airworthiness and suitability in Slick magneto. Parts purchased from sources other than Champion Aerospace, even though outwardly identical in appearance may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in a Slick magneto. Salvaged magneto parts, reworked parts obtained from non-Champion Aerospace approved sources, or parts the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures, or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render service work with this part, even though originally manufactured by Champion Aerospace, unsuitable or unsafe for use in a Slick magneto. Champion Aerospace expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-Champion Aerospace approved parts.

Slick magneto is engineered to that mechanical parts wear at a balanced rate. Consistent and complimentary wear patterns establish the recommended maintenance intervals defined in Champion Aerospace service literature, therefore used, service worn parts should never be used to troubleshoot or repair a magneto, nor should original parts be replaced by used service worn parts on magnetos being returned to service. Further, non-Champion Aerospace manufactured parts may wear at uneven and different rates than original Champion Aerospace manufactured parts, making Champion Aerospace service literature an inappropriate guide to proper maintenance. Parts not manufactured by Champion Aerospace, even if FAA/PMA Approved, may not fit or operate like original Champion Aerospace manufactured parts. FAA testing of PMA parts does not require operation on an engine or flight tests and does not require the test duration to exceed the maintenance intervals called out in Champion Aerospace literature. For these reasons, used service worn parts or parts not manufactured by Champion Aerospace may adversely affect magneto reliability in ways not anticipated by Champion Aerospace and its service literature.

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condenser</td>
<td>1</td>
</tr>
<tr>
<td>Double Sealed Bearing</td>
<td>1</td>
</tr>
<tr>
<td>Bearing Cap Assembly</td>
<td>1</td>
</tr>
<tr>
<td>Coil</td>
<td>1</td>
</tr>
<tr>
<td>Impulse Coupling</td>
<td>1</td>
</tr>
<tr>
<td>Oil Seal</td>
<td>1</td>
</tr>
<tr>
<td>Contact Point Kit</td>
<td>1</td>
</tr>
<tr>
<td>Rotor Gear</td>
<td>1</td>
</tr>
<tr>
<td>Distributor Block and Gear</td>
<td>1</td>
</tr>
</tbody>
</table>

PRESSURIZED MAGNETOS:
In addition to above parts, the following components must be replaced at every overhaul.

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurized Magneto Kit</td>
<td>1</td>
</tr>
<tr>
<td>Round Head Screw</td>
<td>1</td>
</tr>
<tr>
<td>Round Head Screw</td>
<td>3</td>
</tr>
<tr>
<td>Frame Gasket</td>
<td>1</td>
</tr>
<tr>
<td>Housing Screw</td>
<td>4</td>
</tr>
<tr>
<td>Harness Cap ‘O’ Ring</td>
<td>1</td>
</tr>
</tbody>
</table>

Reference Table Five "Parts Listing" for correct part number for a specified model magneto.
TABLE FIVE

6300 SERVICE PARTS LIST

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
<th>6309</th>
<th>6310</th>
<th>6313</th>
<th>6314</th>
<th>6320</th>
<th>6324</th>
<th>6331</th>
<th>6340</th>
<th>6350</th>
<th>6351</th>
<th>6355</th>
<th>Qty. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cotter Pin</td>
<td>M2556</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Nut</td>
<td>M3019</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Washer</td>
<td>M3172</td>
<td>M3172</td>
<td>M3172</td>
<td>M3172</td>
<td>M3172</td>
<td>M3172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Impulse Coupling Assy.</td>
<td></td>
<td>M3050</td>
<td></td>
<td>M3069</td>
<td></td>
<td>M3050</td>
<td></td>
<td>M3089</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Impulse Coupling Spring</td>
<td></td>
<td>M917</td>
<td></td>
<td>M917</td>
<td></td>
<td>M917</td>
<td></td>
<td>M917</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Oil Seal</td>
<td>M3062</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Pressure Vent Plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M3179</td>
<td></td>
<td>M3179</td>
<td></td>
<td>M3179</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Air Vent</td>
<td>M1077</td>
<td>M1077</td>
<td>M1077</td>
<td>M1077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Frame</td>
<td>M3946</td>
<td>M3837</td>
<td>M3946</td>
<td>M3847</td>
<td>M3837</td>
<td>M3847</td>
<td>M3837</td>
<td>M3886</td>
<td>M3900</td>
<td>M3890</td>
<td>M3859</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Gasket Pressure kit</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Ball Bearing</td>
<td>M3006</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Rotor</td>
<td>M3914</td>
<td>M3047</td>
<td>M3914</td>
<td>M3093</td>
<td>M3047</td>
<td>M3093</td>
<td>M3093</td>
<td>M3792</td>
<td>M5618</td>
<td>M5617</td>
<td>M3327</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bearing Cap Assy.</td>
<td>M3630</td>
<td>M3485</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Bearing Cap Clamp</td>
<td>M3018</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Screw</td>
<td>M3221</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Contact Point Primary</td>
<td>M3637</td>
<td>M3081</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Contact Point Secondary</td>
<td>M3637</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Rotor Gear</td>
<td>M3828</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Woodruff Key</td>
<td>M2536</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Screw</td>
<td>M3040</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Screw</td>
<td>M3020</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Screw</td>
<td>M3221</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>Screw</td>
<td>M3021</td>
<td>M3021</td>
<td>M3021</td>
<td>M3021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Screw</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Screw</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Pressure Tube Fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M3180</td>
<td>M3180</td>
<td>M3180</td>
<td>M3180</td>
<td>M3180</td>
<td>M3180</td>
<td>M3180</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Air Vent with Hood</td>
<td>M3084</td>
<td>M3084</td>
<td>M3084</td>
<td>M3084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Screw</td>
<td>M3015</td>
<td>M3015</td>
<td>M3015</td>
<td>M3015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>Housing, Distributor</td>
<td>M3832</td>
<td>M3902</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Capacitor</td>
<td>K3984</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Dist. Block & Gear Assy.</td>
<td>K3823</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bearing Kit</td>
<td>K3630</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3319</td>
<td>K3319</td>
<td>K3319</td>
<td>K3319</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Carbon Brush</td>
<td>K3215</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Screw</td>
<td>M3021</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>Spacer</td>
<td>M3826</td>
<td>2</td>
</tr>
</tbody>
</table>

* Models 6331, 6340, 6350, 6351, 6355, 6356, 6360, 6361, 6363, 6365, 6371, 6390, 6391, and 6394 use Qty 2 Woodruff Keys.

NOTE: Harness Cap Screws M1553, quantity 3, are used to attach wiring harness to all magneto models.
TABLE FIVE
6300 SERVICE PARTS LIST
(Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
<th>6360</th>
<th>6361</th>
<th>6362</th>
<th>6363</th>
<th>6364</th>
<th>6365</th>
<th>6367</th>
<th>6371</th>
<th>6377</th>
<th>6379</th>
<th>6380</th>
<th>Qty. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cotter Pin</td>
<td>M2556</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Nut</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>M3492</td>
<td>M3019</td>
<td>M3492</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Washer</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Impulse Coupling Assy.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Impulse Coupling Spring</td>
<td></td>
<td>M917</td>
</tr>
<tr>
<td>6</td>
<td>Oil Seal</td>
<td>M3331</td>
<td>M3062</td>
<td>M3331</td>
<td>M3062</td>
<td>M3331</td>
<td>M3062</td>
<td>M3331</td>
<td>M3062</td>
<td>M3062</td>
<td>M3062</td>
<td>M3062</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Pressure Vent Plug</td>
<td>M3179</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Air Vent</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Frame</td>
<td>M3900</td>
<td>M3859</td>
<td>M3900</td>
<td>M3853</td>
<td>M3900</td>
<td>M3856</td>
<td>M3900</td>
<td>M3859</td>
<td>M3859</td>
<td>M3859</td>
<td>M3859</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Gasket Pressure Kit</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ball Bearing</td>
<td>M3006</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Rotor</td>
<td>M5617</td>
<td>M3047</td>
<td>M5617</td>
<td>M3496</td>
<td>M5617</td>
<td>M3499</td>
<td>M5617</td>
<td>M5015</td>
<td>M5015</td>
<td>M5015</td>
<td>M5015</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bearing Cap Assy.</td>
<td>M3485</td>
<td>M3485</td>
<td>M3485</td>
<td>M3630</td>
<td>M3485</td>
<td>M3630</td>
<td>M3485</td>
<td>M3630</td>
<td>M3485</td>
<td>M3485</td>
<td>M3485</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Bearing Cap Clamp</td>
<td>M3018</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Screw</td>
<td>M3221</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Contact Point Primary</td>
<td>M3081</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Contact Point Secondary</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Rotor Gear</td>
<td>M3828</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Woodruff Key</td>
<td>M2536</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Coil Wedge</td>
<td>M3040</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Screw</td>
<td>M3020</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Coil</td>
<td>K3975</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Harness Cap</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Pressure Tube Fitting</td>
<td>M1280</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Air Vent with Hood</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Screw</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Housing, Distributor</td>
<td>M3902</td>
<td>M3902</td>
<td>M3832</td>
<td>M3902</td>
<td>M3832</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>M3902</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Capacitor</td>
<td>K3984</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Dist. Block & Gear Assy.</td>
<td>K3823</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Deleted</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bearing Kit</td>
<td>K3319</td>
<td>K3319</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Carbon Brush</td>
<td>K3215</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Screw</td>
<td>M3021</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>Spacer</td>
<td>M3826</td>
<td>2</td>
</tr>
</tbody>
</table>

* Models 6331, 6340, 6350, 6351, 6355, 6360, 6361, 6363, 6365, 6371, 6390, 6391, and 6394 use Qty 2 Woodruff Keys.

NOTE: Harness Cap Screws M1553, quantity 3, are used to attach wiring harness to all magneto models.
TABLE FIVE

6300 SERVICE PARTS LIST
(Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Description</th>
<th>6382</th>
<th>6390</th>
<th>6391</th>
<th>6393</th>
<th>6394</th>
<th>6399</th>
<th>Qty. Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cotter Pin</td>
<td>M2556</td>
<td>M2556</td>
<td>M2556</td>
<td>M2556</td>
<td>M2556</td>
<td>M2556</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Nut</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>M3019</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Washer</td>
<td>M3172</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M3172</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Impulse Coupling Assy.</td>
<td>M3050</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M3939</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Impulse Coupling Spring</td>
<td>M917</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>M917</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Oil Seal</td>
<td>M3062</td>
<td>M3331</td>
<td>M3331</td>
<td>M3331</td>
<td>M3331</td>
<td>M3062</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Pressure Vent Plug</td>
<td>-</td>
<td>-</td>
<td>M3179</td>
<td>-</td>
<td>M3179</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Air Vent</td>
<td>M1968</td>
<td>M1077</td>
<td>= M1077</td>
<td>M1077</td>
<td>M1077</td>
<td>M1077</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Frame</td>
<td>M3850</td>
<td>M3900</td>
<td>M3900</td>
<td>M3900</td>
<td>M3900</td>
<td>M3972</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Gasket Pressure Kit</td>
<td>-</td>
<td>-</td>
<td>K3307= K3307</td>
<td>K3307</td>
<td>K3307</td>
<td>K3307</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Ball Bearing</td>
<td>M3006</td>
<td>M3006</td>
<td>M3006</td>
<td>M3006</td>
<td>M3006</td>
<td>M3006</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Rotor</td>
<td>M3047</td>
<td>M5617</td>
<td>M5617</td>
<td>M5617</td>
<td>M5617</td>
<td>M3948</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Bearing Cap Assy.</td>
<td>M3485</td>
<td>M3630</td>
<td>M3630</td>
<td>M3630</td>
<td>M3630</td>
<td>M3485</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Bearing Cap Clamp</td>
<td>M3018</td>
<td>M3018</td>
<td>M3018</td>
<td>M3018</td>
<td>M3018</td>
<td>M3018</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Screw</td>
<td>M3221</td>
<td>M3221</td>
<td>M3221</td>
<td>M3221</td>
<td>M3221</td>
<td>M3221</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Contact Point Primary</td>
<td>M3081</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>M3081</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Contact Point Secondary</td>
<td>-</td>
<td>M3740</td>
<td>M3637</td>
<td>M3637</td>
<td>M3637</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Rotor Gear</td>
<td>M3828</td>
<td>M3828</td>
<td>M3828</td>
<td>M3828</td>
<td>M3828</td>
<td>M3828</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Woodruff Key</td>
<td>M2536</td>
<td>M2536</td>
<td>M2536</td>
<td>M2536</td>
<td>M2536</td>
<td>M2536</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Coil Wedge</td>
<td>M3040</td>
<td>M3040</td>
<td>M3040</td>
<td>M3040</td>
<td>M3040</td>
<td>M3040</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>Screw</td>
<td>M3020</td>
<td>M3020</td>
<td>M3020</td>
<td>M3020</td>
<td>M3020</td>
<td>M3020</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Coil</td>
<td>K3975</td>
<td>K3975</td>
<td>K3975</td>
<td>K3975</td>
<td>K3975</td>
<td>K3975</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Screw</td>
<td>M3021</td>
<td>M3021</td>
<td>-</td>
<td>M3021</td>
<td>-</td>
<td>M3021</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Harness Cap</td>
<td>M3154</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Screw</td>
<td>M3125</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>Pressure Tube Fitting</td>
<td>-</td>
<td>-</td>
<td>M1280= M1280</td>
<td>M1280</td>
<td>M1280</td>
<td>M1280</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Air Vent with Hood</td>
<td>M3084</td>
<td>M3084</td>
<td>-</td>
<td>M3084</td>
<td>-</td>
<td>M3084</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Screw</td>
<td>M3015</td>
<td>M3015</td>
<td>-</td>
<td>M3015</td>
<td>-</td>
<td>M3015</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>Housing, Distributor</td>
<td>M3902</td>
<td>M3874</td>
<td>M3832</td>
<td>M3832</td>
<td>M3832</td>
<td>M3902</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Capacitor</td>
<td>K3984</td>
<td>K3984</td>
<td>K3984</td>
<td>K3984</td>
<td>K3984</td>
<td>K3984</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Dist. Block & Gear Assy.</td>
<td>K3823</td>
<td>K3823</td>
<td>K3823</td>
<td>K3823</td>
<td>K3823</td>
<td>K3823</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Deleted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Bearing Kit</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>K3320</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Carbon Brush</td>
<td>K3215</td>
<td>K3215</td>
<td>K3215</td>
<td>K3215</td>
<td>K3215</td>
<td>K3215</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Screw</td>
<td>M3021</td>
<td>M3021</td>
<td>M3021</td>
<td>M3021</td>
<td>M3021</td>
<td>M3021</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>Spacer</td>
<td>M3826</td>
<td>M3826</td>
<td>M3826</td>
<td>M3826</td>
<td>M3826</td>
<td>M3826</td>
<td>2</td>
</tr>
</tbody>
</table>

*Models 6331, 6340, 6350, 6351, 6355, 6356, 6360, 6361, 6363, 6365, 6367, 6390, 6391, and 6394 use Qty 2 Woodruff Keys.
NOTE: Harness Cap Screws M1553, quantity 3, are used to attach wiring harness to all magneto models.
TABLE SIX
EXPLODED PARTS DIAGRAM
6300 SERIES MAGNETO
TABLE SEVEN
SERVICE LIMITS

SERVICE TORQUE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Torque Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-3614</td>
<td>Primary/Retard Point</td>
<td>15 - 18 in.-lbs</td>
</tr>
<tr>
<td>M-3081</td>
<td>Contact Point</td>
<td>15 - 18 in.-lbs</td>
</tr>
<tr>
<td>M-1053</td>
<td>P-Lead Nut</td>
<td>13 - 15 in.-lbs</td>
</tr>
<tr>
<td>M-1077</td>
<td>Air Vent Body</td>
<td>80 - 90 in.-lbs</td>
</tr>
<tr>
<td>M-1343</td>
<td>Air Vent Body</td>
<td>80 - 90 in.-lbs</td>
</tr>
<tr>
<td>M-1553</td>
<td>Harness Cap Screw</td>
<td>18 - 28 in.-lbs</td>
</tr>
<tr>
<td>M-1723</td>
<td>Magneto Cap Screw</td>
<td>190 - 220 in.-lbs</td>
</tr>
<tr>
<td>M-2550</td>
<td>Air Vent Hood Screw</td>
<td>5 - 7 in.-lbs</td>
</tr>
<tr>
<td>M-2555</td>
<td>Housing Screw</td>
<td>18 - 28 in.-lbs</td>
</tr>
<tr>
<td>M-3015</td>
<td>Housing Screw</td>
<td>18 - 28 in.-lbs</td>
</tr>
<tr>
<td>M-3019</td>
<td>Impulse Coupling Nut</td>
<td>120 - 180 in.-lbs</td>
</tr>
<tr>
<td>M-3020</td>
<td>Contact Point / Coil Ground</td>
<td>20 - 24 in.-lbs</td>
</tr>
<tr>
<td>M-3021</td>
<td>Distributor Block Screw</td>
<td>18 - 28 in.-lbs</td>
</tr>
<tr>
<td>M-3125</td>
<td>Harness Adapter Screw</td>
<td>18 - 28 in.-lbs</td>
</tr>
<tr>
<td>M-3180</td>
<td>Air Inlet Nozzle</td>
<td>80 - 90 in.-lbs</td>
</tr>
<tr>
<td>M-3984</td>
<td>Capacitor</td>
<td>150 - 160 in.-lbs</td>
</tr>
<tr>
<td>M-3221</td>
<td>Bearing Cap Screw</td>
<td>20 - 24 in.-lbs</td>
</tr>
</tbody>
</table>

* If cotter pin will not align with pin hole within the specified torque range, remove nut and lightly lap the bottom surface of the nut with a piece of emery cloth.

LUBRICATION

- **M-1827:** Cam Grease - For Rotor Cam
- **R5008:** Exxon Terrestic Grade 100 Oil - For Distributor Block and Gear assembly Oilite Bearings; Slick, 32 oz.

CONSUMABLES:

- **Loctite 242:** For Bearing Cap Hold-Down Screws and Distributor Block Screws

TOLERANCES

<table>
<thead>
<tr>
<th>Component</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Coil</td>
<td>.50 - 1.2 Ohms</td>
</tr>
<tr>
<td>Secondary Coil</td>
<td>13,000 - 20,500 Ohms</td>
</tr>
<tr>
<td>Condenser</td>
<td>.35 MFD ± 10%</td>
</tr>
</tbody>
</table>
THIS PAGE LEFT BLANK INTENTIONALLY.